These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

402 related articles for article (PubMed ID: 18762232)

  • 61. Orienting of attention and Parkinson's disease: tactile inhibition of return and response inhibition.
    Poliakoff E; O'Boyle DJ; Moore AP; McGlone FP; Cody FW; Spence C
    Brain; 2003 Sep; 126(Pt 9):2081-92. PubMed ID: 12876143
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The effect of age on inhibition of return is independent of non-ocular response inhibition.
    Poliakoff E; Coward RS; Lowe C; O'Boyle DJ
    Neuropsychologia; 2007 Jan; 45(2):387-96. PubMed ID: 16884743
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Spatial and feature-based effects of exogenous cueing on visual motion processing.
    Busse L; Katzner S; Treue S
    Vision Res; 2006 Jun; 46(13):2019-27. PubMed ID: 16476463
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Frontoparietal control of spatial attention and motor intention in human EEG.
    Praamstra P; Boutsen L; Humphreys GW
    J Neurophysiol; 2005 Jul; 94(1):764-74. PubMed ID: 15744008
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Common modules for processing invalidly cued events in the human cortex.
    Mattler U; Wüstenberg T; Heinze HJ
    Brain Res; 2006 Sep; 1109(1):128-41. PubMed ID: 16859648
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Attentional shifts towards an expected visual target alter the level of alpha-band oscillatory activity in the human calcarine cortex.
    Yamagishi N; Goda N; Callan DE; Anderson SJ; Kawato M
    Brain Res Cogn Brain Res; 2005 Dec; 25(3):799-809. PubMed ID: 16246532
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Contextual cueing effects despite spatially cued target locations.
    Schankin A; Schubö A
    Psychophysiology; 2010 Jul; 47(4):717-27. PubMed ID: 20230499
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Directing attention to a location in space results in retinotopic activation in primary visual cortex.
    Munneke J; Heslenfeld DJ; Theeuwes J
    Brain Res; 2008 Jul; 1222():184-91. PubMed ID: 18589405
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Cue repetition increases inhibition of return.
    Dukewich KR; Boehnke SE
    Neurosci Lett; 2008 Dec; 448(3):231-5. PubMed ID: 18973792
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Neural mechanisms of spatial- and feature-based attention: a quantitative analysis.
    Stoppel CM; Boehler CN; Sabelhaus C; Heinze HJ; Hopf JM; Schoenfeld MA
    Brain Res; 2007 Nov; 1181():51-60. PubMed ID: 17961522
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The distributed neuronal systems supporting choice-making in real-life situations: differences between men and women when choosing groceries detected using magnetoencephalography.
    Braeutigam S; Rose SP; Swithenby SJ; Ambler T
    Eur J Neurosci; 2004 Jul; 20(1):293-302. PubMed ID: 15245501
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Visualizing the temporal dynamics of spatial information processing responsible for the Simon effect and its amplification by inhibition of return.
    Hilchey MD; Ivanoff J; Taylor TL; Klein RM
    Acta Psychol (Amst); 2011 Feb; 136(2):235-44. PubMed ID: 20932500
    [TBL] [Abstract][Full Text] [Related]  

  • 73. An ERP investigation on visuotactile interactions in peripersonal and extrapersonal space: evidence for the spatial rule.
    Sambo CF; Forster B
    J Cogn Neurosci; 2009 Aug; 21(8):1550-9. PubMed ID: 18767919
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Interactions between proximity and similarity grouping: an event-related brain potential study in humans.
    Han S
    Neurosci Lett; 2004 Aug; 367(1):40-3. PubMed ID: 15308293
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Attending to multiple visual streams: interactions between location-based and category-based attentional selection.
    Fagioli S; Macaluso E
    J Cogn Neurosci; 2009 Aug; 21(8):1628-41. PubMed ID: 18823252
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Cortical mechanisms of attention in time: neural correlates of the Lag-1-sparing phenomenon.
    Kessler K; Schmitz F; Gross J; Hommel B; Shapiro K; Schnitzler A
    Eur J Neurosci; 2005 May; 21(9):2563-74. PubMed ID: 15932614
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Uncued and cued dynamics measured by response classification.
    Shimozaki SS
    J Vis; 2010 Jul; 10(8):10. PubMed ID: 20884585
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Effects of allocation of visuo-spatial attention to visual stimuli triggering unilateral arm abduction on anticipatory postural control.
    Tomita H; Fujiwara K
    Clin Neurophysiol; 2008 Sep; 119(9):2086-97. PubMed ID: 18620907
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Neuroleptics reverse attentional effects in schizophrenia patients.
    Sapir A; Dobrusin M; Ben-Bashat G; Henik A
    Neuropsychologia; 2007 Nov; 45(14):3263-71. PubMed ID: 17688893
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Visual and auditory attentional capture are both sluggish in children with developmental dyslexia.
    Facoetti A; Lorusso ML; Cattaneo C; Galli R; Molteni M
    Acta Neurobiol Exp (Wars); 2005; 65(1):61-72. PubMed ID: 15794032
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.