These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 18762375)

  • 1. Recovery and reuse of Ni(II) from rinsewater of electroplating industries.
    Priya PG; Basha CA; Ramamurthi V; Begum SN
    J Hazard Mater; 2009 Apr; 163(2-3):899-909. PubMed ID: 18762375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ion exchange recovery of Ni(II) from simulated electroplating waste solutions containing anionic ligands.
    Juang RS; Kao HC; Liu FY
    J Hazard Mater; 2006 Jan; 128(1):53-9. PubMed ID: 16125313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of nickel from electroplating rinse waters using electrostatic shielding electrodialysis/electrodeionization.
    Dermentzis K
    J Hazard Mater; 2010 Jan; 173(1-3):647-52. PubMed ID: 19766388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crab shell-based biosorption technology for the treatment of nickel-bearing electroplating industrial effluents.
    Vijayaraghavan K; Palanivelu K; Velan M
    J Hazard Mater; 2005 Mar; 119(1-3):251-4. PubMed ID: 15752873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recovery of rare metal compounds from nickel-metal hydride battery waste and their application to CH4 dry reforming catalyst.
    Kanamori T; Matsuda M; Miyake M
    J Hazard Mater; 2009 Sep; 169(1-3):240-5. PubMed ID: 19395161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sorption of Ni(II) ions from aqueous solution by Lewatit cation-exchange resin.
    Dizge N; Keskinler B; Barlas H
    J Hazard Mater; 2009 Aug; 167(1-3):915-26. PubMed ID: 19231079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective adsorption and separation of chromium (VI) on the magnetic iron-nickel oxide from waste nickel liquid.
    Wei L; Yang G; Wang R; Ma W
    J Hazard Mater; 2009 May; 164(2-3):1159-63. PubMed ID: 18954940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recovery of nickel ions from simulated electroplating rinse water by electrodeionization process.
    Lu H; Wang J; Yan B; Bu S
    Water Sci Technol; 2010; 61(3):729-35. PubMed ID: 20150710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A dual membrane UF/RO process for reclamation of spent rinses from a nickel-plating operation--a case study.
    Qin JJ; Oo MH; Wai MN; Ang CM; Wong FS; Lee H
    Water Res; 2003 Jul; 37(13):3269-78. PubMed ID: 14509715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical reactor with rotating cylinder electrode for optimum electrochemical recovery of nickel from plating rinsing effluents.
    Hernández-Tapia JR; Vazquez-Arenas J; González I
    J Hazard Mater; 2013 Nov; 262():709-16. PubMed ID: 24121642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An overview of the recovery of acid from spent acidic solutions from steel and electroplating industries.
    Agrawal A; Sahu KK
    J Hazard Mater; 2009 Nov; 171(1-3):61-75. PubMed ID: 19632040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of a low-cost adsorbent for removal of toxic metal ions from wastewater of an electroplating factory.
    Sousa FW; Sousa MJ; Oliveira IR; Oliveira AG; Cavalcante RM; Fechine PB; Neto VO; de Keukeleire D; Nascimento RF
    J Environ Manage; 2009 Aug; 90(11):3340-4. PubMed ID: 19535200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nickel recovery from spent Raneynickel catalyst through dilute sulfuric acid leaching and soda ash precipitation.
    Lee JY; Rao SV; Kumar BN; Kang DJ; Reddy BR
    J Hazard Mater; 2010 Apr; 176(1-3):1122-5. PubMed ID: 20018448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Treatment of cadmium and nickel electroplating rinse water by electrocoagulation.
    Kobya M; Demirbas E; Parlak NU; Yigit S
    Environ Technol; 2010 Dec; 31(13):1471-81. PubMed ID: 21214006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel process for recovering valuable metals from waste nickel-cadmium batteries.
    Huang K; Li J; Xu Z
    Environ Sci Technol; 2009 Dec; 43(23):8974-8. PubMed ID: 19943675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of continuous solvent extraction of nickel from spent electroless nickel plating baths by a mixer-settler.
    Huang Y; Tanaka M
    J Hazard Mater; 2009 May; 164(2-3):1228-35. PubMed ID: 18977080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning the diffusion dialysis performance by surface cross-linking of PPO anion exchange membranes--simultaneous recovery of sulfuric acid and nickel from electrolysis spent liquor of relatively low acid concentration.
    Tongwen X; Weihua Y
    J Hazard Mater; 2004 Jun; 109(1-3):157-64. PubMed ID: 15177755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of a rotating cylinder electrode to recover zinc from rinse water generated by the electroplating industry.
    Matlalcuatzi S; Nava JL
    Water Sci Technol; 2012; 65(8):1406-11. PubMed ID: 22466586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of heavy metals on the polymorphs of dicalcium silicate in the belite-rich clinkers produced from electroplating sludge.
    Chen YL; Shih PH; Chiang LC; Chang YK; Lu HC; Chang JE
    J Hazard Mater; 2009 Oct; 170(1):443-8. PubMed ID: 19464111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrokinetic recovery of Cd, Cr, As, Ni, Zn and Mn from waste printed circuit boards: effect of assisting agents.
    Xiu FR; Zhang FS
    J Hazard Mater; 2009 Oct; 170(1):191-6. PubMed ID: 19481346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.