These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 18762413)

  • 1. Investigation of ash deposition in a pilot-scale fluidized bed combustor co-firing biomass with lignite.
    Gogebakan Z; Gogebakan Y; Selçuk N; Selçuk E
    Bioresour Technol; 2009 Jan; 100(2):1033-6. PubMed ID: 18762413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trace elements partitioning during co-firing biomass with lignite in a pilot-scale fluidized bed combustor.
    Gogebakan Z; Selçuk N
    J Hazard Mater; 2009 Mar; 162(2-3):1129-34. PubMed ID: 18621479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Partitioning behavior of trace elements during pilot-scale fluidized bed combustion of high ash content lignite.
    Selçuk N; Gogebakan Y; Gogebakan Z
    J Hazard Mater; 2006 Oct; 137(3):1698-703. PubMed ID: 16757112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of co-combustion on the burnout of lignite/biomass blends: a Turkish case study.
    Haykiri-Acma H; Yaman S
    Waste Manag; 2008 Nov; 28(11):2077-84. PubMed ID: 17964772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of biomass-sulfur interaction on ash composition and agglomeration for the co-combustion of high-sulfur lignite coals and olive cake in a circulating fluidized bed combustor.
    Varol M; Atimtay AT
    Bioresour Technol; 2015 Dec; 198():325-31. PubMed ID: 26407346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control methods for mitigating biomass ash-related problems in fluidized beds.
    Vamvuka D; Zografos D; Alevizos G
    Bioresour Technol; 2008 Jun; 99(9):3534-44. PubMed ID: 17826986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of fluidising velocity on the combustion of rice husk in a bench-scale fluidised bed combustor for the production of amorphous rice husk ash.
    Rozainee M; Ngo SP; Salema AA; Tan KG; Ariffin M; Zainura ZN
    Bioresour Technol; 2008 Mar; 99(4):703-13. PubMed ID: 17379511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of freeboard extension on co-combustion of coal and olive cake in a fluidized bed combustor.
    Akpulat O; Varol M; Atimtay AT
    Bioresour Technol; 2010 Aug; 101(15):6177-84. PubMed ID: 20347293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electroremediation of straw and co-combustion ash under acidic conditions.
    Lima AT; Ottosen LM; Ribeiro AB
    J Hazard Mater; 2009 Jan; 161(2-3):1003-9. PubMed ID: 18499343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-combustion of agricultural residues with coal in a fluidized bed combustor.
    Ghani WA; Alias AB; Savory RM; Cliffe KR
    Waste Manag; 2009 Feb; 29(2):767-73. PubMed ID: 18614348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrodynamics of a fluidized bed co-combustor for tobacco waste and coal.
    Zhang K; Yu B; Chang J; Wu G; Wang T; Wen D
    Bioresour Technol; 2012 Sep; 119():339-48. PubMed ID: 22750501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shea meal and cotton stalk as potential fuels for co-combustion with coal.
    Munir S; Nimmo W; Gibbs BM
    Bioresour Technol; 2010 Oct; 101(19):7614-23. PubMed ID: 20483598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mineral sequestration of CO(2) by aqueous carbonation of coal combustion fly-ash.
    Montes-Hernandez G; Pérez-López R; Renard F; Nieto JM; Charlet L
    J Hazard Mater; 2009 Jan; 161(2-3):1347-54. PubMed ID: 18539389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative evaluation of minerals in fly ashes of biomass, coal and biomass-coal mixture derived from circulating fluidised bed combustion technology.
    Koukouzas N; Ward CR; Papanikolaou D; Li Z; Ketikidis C
    J Hazard Mater; 2009 Sep; 169(1-3):100-7. PubMed ID: 19410365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-pyrolysis of Chinese lignite and biomass in a vacuum reactor.
    Yang X; Yuan C; Xu J; Zhang W
    Bioresour Technol; 2014 Dec; 173():1-5. PubMed ID: 25277348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of the Cd-bearing phases in municipal solid waste and biomass single fly ash particles using SR-microXRF spectroscopy.
    Camerani MC; Somogyi A; Vekemans B; Ansell S; Simionovici AS; Steenari BM; Panas I
    Anal Chem; 2007 Sep; 79(17):6496-506. PubMed ID: 17676816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mercury emissions during cofiring of sub-bituminous coal and biomass (chicken waste, wood, coffee residue, and tobacco stalk) in a laboratory-scale fluidized bed combustor.
    Cao Y; Zhou H; Fan J; Zhao H; Zhou T; Hack P; Chan CC; Liou JC; Pan WP
    Environ Sci Technol; 2008 Dec; 42(24):9378-84. PubMed ID: 19174919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on fusion characteristics of biomass ash.
    Niu Y; Tan H; Wang X; Liu Z; Liu H; Liu Y; Xu T
    Bioresour Technol; 2010 Dec; 101(23):9373-81. PubMed ID: 20655203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Valorization of lignite combustion residues and ferroalumina in the production of aggregates.
    Anagnostopoulos IM; Stivanakis VE; Angelopoulos GN; Papamantellos DC
    J Hazard Mater; 2010 Feb; 174(1-3):506-11. PubMed ID: 19850411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reclamation and revegetation of fly ash disposal sites - Challenges and research needs.
    Haynes RJ
    J Environ Manage; 2009 Jan; 90(1):43-53. PubMed ID: 18706753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.