BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 18763023)

  • 1. Development of 3D PPF/DEF scaffolds using micro-stereolithography and surface modification.
    Lan PX; Lee JW; Seol YJ; Cho DW
    J Mater Sci Mater Med; 2009 Jan; 20(1):271-9. PubMed ID: 18763023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of arginine-glycine-aspartate-immobilized 3D printed poly(propylene fumarate) scaffolds for cartilage tissue engineering.
    Ahn CB; Kim Y; Park SJ; Hwang Y; Lee JW
    J Biomater Sci Polym Ed; 2018; 29(7-9):917-931. PubMed ID: 28929935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extrusion-based 3D printing of poly(propylene fumarate) scaffolds with hydroxyapatite gradients.
    Trachtenberg JE; Placone JK; Smith BT; Fisher JP; Mikos AG
    J Biomater Sci Polym Ed; 2017 Apr; 28(6):532-554. PubMed ID: 28125380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication and characteristic analysis of a poly(propylene fumarate) scaffold using micro-stereolithography technology.
    Lee JW; Lan PX; Kim B; Lim G; Cho DW
    J Biomed Mater Res B Appl Biomater; 2008 Oct; 87(1):1-9. PubMed ID: 18335437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poly(propylene fumarate)-based materials: Synthesis, functionalization, properties, device fabrication and biomedical applications.
    Cai Z; Wan Y; Becker ML; Long YZ; Dean D
    Biomaterials; 2019 Jul; 208():45-71. PubMed ID: 30991217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and characterization of poly(propylene fumarate) scaffolds with controlled pore structures using 3-dimensional printing and injection molding.
    Lee KW; Wang S; Lu L; Jabbari E; Currier BL; Yaszemski MJ
    Tissue Eng; 2006 Oct; 12(10):2801-11. PubMed ID: 17518649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Chemical and Physical Properties on the In Vitro Degradation of 3D Printed High Resolution Poly(propylene fumarate) Scaffolds.
    Walker JM; Bodamer E; Krebs O; Luo Y; Kleinfehn A; Becker ML; Dean D
    Biomacromolecules; 2017 Apr; 18(4):1419-1425. PubMed ID: 28291335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(propylene fumarate) bone tissue engineering scaffold fabrication using stereolithography: effects of resin formulations and laser parameters.
    Lee KW; Wang S; Fox BC; Ritman EL; Yaszemski MJ; Lu L
    Biomacromolecules; 2007 Apr; 8(4):1077-84. PubMed ID: 17326677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of tissue-engineered substitutes of the ear ossicles: PORP-shaped poly(propylene fumarate)-based scaffolds cultured with human mesenchymal stromal cells.
    Danti S; D'Alessandro D; Pietrabissa A; Petrini M; Berrettini S
    J Biomed Mater Res A; 2010 Mar; 92(4):1343-56. PubMed ID: 19353559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone regeneration using a microstereolithography-produced customized poly(propylene fumarate)/diethyl fumarate photopolymer 3D scaffold incorporating BMP-2 loaded PLGA microspheres.
    Lee JW; Kang KS; Lee SH; Kim JY; Lee BK; Cho DW
    Biomaterials; 2011 Jan; 32(3):744-52. PubMed ID: 20933279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo bone biocompatibility and degradation of porous fumarate-based polymer/alumoxane nanocomposites for bone tissue engineering.
    Mistry AS; Pham QP; Schouten C; Yeh T; Christenson EM; Mikos AG; Jansen JA
    J Biomed Mater Res A; 2010 Feb; 92(2):451-62. PubMed ID: 19191316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and in vitro degradation of porous fumarate-based polymer/alumoxane nanocomposite scaffolds for bone tissue engineering.
    Mistry AS; Cheng SH; Yeh T; Christenson E; Jansen JA; Mikos AG
    J Biomed Mater Res A; 2009 Apr; 89(1):68-79. PubMed ID: 18428800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photocrosslinking characteristics and mechanical properties of diethyl fumarate/poly(propylene fumarate) biomaterials.
    Fisher JP; Dean D; Mikos AG
    Biomaterials; 2002 Nov; 23(22):4333-43. PubMed ID: 12219823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of photocrosslinkable resin components and 3D printing process parameters.
    Guerra AJ; Lammel-Lindemann J; Katko A; Kleinfehn A; Rodriguez CA; Catalani LH; Becker ML; Ciurana J; Dean D
    Acta Biomater; 2019 Oct; 97():154-161. PubMed ID: 31352105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth.
    Cooke MN; Fisher JP; Dean D; Rimnac C; Mikos AG
    J Biomed Mater Res B Appl Biomater; 2003 Feb; 64(2):65-9. PubMed ID: 12516080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoinitiated cross-linking of the biodegradable polyester poly(propylene fumarate). Part II. In vitro degradation.
    Fisher JP; Holland TA; Dean D; Mikos AG
    Biomacromolecules; 2003; 4(5):1335-42. PubMed ID: 12959603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro degradation of porous poly(propylene fumarate)/poly(DL-lactic-co-glycolic acid) composite scaffolds.
    Hedberg EL; Shih CK; Lemoine JJ; Timmer MD; Liebschner MA; Jansen JA; Mikos AG
    Biomaterials; 2005 Jun; 26(16):3215-25. PubMed ID: 15603816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micro-computed tomography (micro-CT) as a potential tool to assess the effect of dynamic coating routes on the formation of biomimetic apatite layers on 3D-plotted biodegradable polymeric scaffolds.
    Oliveira AL; Malafaya PB; Costa SA; Sousa RA; Reis RL
    J Mater Sci Mater Med; 2007 Feb; 18(2):211-23. PubMed ID: 17323152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Four-order stiffness variation of laser-fabricated photopolymer biodegradable scaffolds by laser parameter modulation.
    Farkas B; Romano I; Ceseracciu L; Diaspro A; Brandi F; Beke S
    Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():14-21. PubMed ID: 26117734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-Dimension-Printed Porous Poly(Propylene Fumarate) Scaffolds with Delayed rhBMP-2 Release for Anterior Cruciate Ligament Graft Fixation.
    Parry JA; Olthof MG; Shogren KL; Dadsetan M; Van Wijnen A; Yaszemski M; Kakar S
    Tissue Eng Part A; 2017 Apr; 23(7-8):359-365. PubMed ID: 28081675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.