BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 18763512)

  • 1. Application of nanoparticles to increase biological hydrogen production: the difference in metabolic pathways in batch and continuous reactors.
    Moura AGL; Rabelo CABS; Silva EL; Varesche MBA
    Environ Technol; 2024 Jun; 45(15):3095-3103. PubMed ID: 37129278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel microbial community restructuring strategy for enhanced hydrogen production using multiple pretreatments and CSTR operation.
    Jiang J; Guo T; Wang J; Sun A; Chen X; Xu X; Dai S; Qin Z
    Environ Res; 2024 Jun; 251(Pt 2):118725. PubMed ID: 38518915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving Biohydrogen Production by Dark Fermentation of Milk Processing Wastewater by Physicochemical and Enzymatic Pretreatments.
    Bouchareb EM; Derbal K; Bedri R; Slimani K; Menas S; Lazreg H; Maaref F; Ouabdelkader S; Saheb A; Bouaita R; Bouchareb R; Dizge N
    Appl Biochem Biotechnol; 2024 May; 196(5):2741-2756. PubMed ID: 37682509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient phosphate and hydrogen recovery from sludge fermentation liquid by sacrificial iron anode in electro-fermentation system.
    Qiang H; Liu Z; Yin X; Guo Z; Duan Y; Liu W; Yue X; Zhou A
    J Environ Manage; 2024 Jun; 360():121110. PubMed ID: 38733846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dark fermentation of pretreated hydrolysates of pineapple fruit waste for the production of biohydrogen using bacteria isolated from wastewater sources.
    Mechery J; Kumar CSP; Ambily V; Varghese A; Sylas VP
    Environ Technol; 2024 Apr; 45(10):2067-2075. PubMed ID: 36591897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced fermentative hydrogen production from potato waste by enzymatic pretreatment.
    Bouchareb EM; Derbal K; Bedri R; Menas S; Bouchareb R; Dizge N
    Environ Technol; 2024 Apr; 45(9):1801-1809. PubMed ID: 36449015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of zero-valent iron nanoparticles on taxonomic composition and hydrogen production from kitchen waste.
    Luo L; Mak KL; Mal J; Khanal SK; Pradhan N
    Bioresour Technol; 2023 Nov; 387():129578. PubMed ID: 37506933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fermentative Biohydrogen and Biomethane Production from High-Strength Industrial Food Waste Hydrolysate Using Suspended Cell Techniques.
    Kongthong O; Dokmaingam P; Chu CY
    Mol Biotechnol; 2023 Nov; ():. PubMed ID: 37934388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining pretreatments and co-fermentation as successful approach to improve biohydrogen production from dairy cow manure.
    Hangri S; Derbal K; Policastro G; Panico A; Contestabile P; Pontoni L; Race M; Fabbricino M
    Environ Res; 2024 Apr; 246():118118. PubMed ID: 38199469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mixed culture biotechnology and its versatility in dark fermentative hydrogen production.
    Mohanakrishna G; Pengadeth D
    Bioresour Technol; 2024 Feb; 394():130286. PubMed ID: 38176598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nickel-iron doped on granular activated carbon for efficient immobilization in biohydrogen production.
    Jamaludin NFM; Abdullah LC; Idrus S; Engliman NS; Tan JP; Jamali NS
    Bioresour Technol; 2024 Jan; 391(Pt A):129933. PubMed ID: 37898370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of short-circuited electrodes in combination with dark fermentation for promoting biohydrogen production process.
    Truong D; Changey F; Rondags E; Framboisier X; Etienne M; Guedon E
    Bioelectrochemistry; 2024 Jun; 157():108631. PubMed ID: 38199186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing biohydrogen production from xylose through natural FeS
    Xu Y; Deng MY; Li SJ; Yuan YC; Sun HY; Wang Q; Chen RP; Yu L
    Bioresour Technol; 2024 May; 399():130632. PubMed ID: 38552859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Outdoor biohydrogen production by thermotolerant Rhodopseudomonas pentothenatexigens KKU-SN1/1 in a cluster of ten bioreactors system.
    Punriboon N; Sawaengkaew J; Mahakhan P
    Bioprocess Biosyst Eng; 2024 Apr; 47(4):583-596. PubMed ID: 38491193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of biological hydrogen from Quinoa residue using dark fermentation and estimation of its microbial diversity.
    Dursun N
    Heliyon; 2024 Feb; 10(3):e25018. PubMed ID: 38314271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bio-hydrogen-producing Potential Evaluation and Capacity Enhancement from Tobacco Processing Leftovers by Photo-fermentation Under Diverse Initial pH.
    Jiao Y; Jiang M; Li Y; Ai F; Zhang Q; Zhang Z
    Mol Biotechnol; 2023 Nov; ():. PubMed ID: 37993757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional link hybrid artificial neural network for predicting continuous biohydrogen production in dynamic membrane bioreactor.
    Pandey AK; Nayak SC; Kim SH
    Bioresour Technol; 2024 Apr; 397():130496. PubMed ID: 38408499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Biohydrogen production by anaerobic fermentation from manure wastewater].
    Tang GL; Xu KF; Wang C; Sun ZJ; Huang J; Liu GQ
    Huan Jing Ke Xue; 2008 Jun; 29(6):1621-5. PubMed ID: 18763512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effects of substrate species on fermentative hydrogen production].
    Tang GL; Tang QQ; Huang J; Liu GQ; Sun ZJ
    Huan Jing Ke Xue; 2008 Aug; 29(8):2345-9. PubMed ID: 18839598
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.