These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 18763831)

  • 1. Self-assembled shape- and orientation-controlled synthesis of nanoscale Cu3Si triangles, squares, and wires.
    Zhang Z; Wong LM; Ong HG; Wang XJ; Wang JL; Wang SJ; Chen H; Wu T
    Nano Lett; 2008 Oct; 8(10):3205-10. PubMed ID: 18763831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shape-controlled fabrication of micro/nanoscale triangle, square, wire-like, and hexagon pits on silicon substrates induced by anisotropic diffusion and silicide sublimation.
    Wang H; Zhang Z; Wong LM; Wang S; Wei Z; Li GP; Xing G; Guo D; Wang D; Wu T
    ACS Nano; 2010 May; 4(5):2901-9. PubMed ID: 20405908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Copper silicide/silicon nanowire heterostructures: in situ TEM observation of growth behaviors and electron transport properties.
    Chiu CH; Huang CW; Chen JY; Huang YT; Hu JC; Chen LT; Hsin CL; Wu WW
    Nanoscale; 2013 Jun; 5(11):5086-92. PubMed ID: 23640615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solution-phase synthesis of single-crystal Cu3Si nanowire arrays on diverse substrates with dual functions as high-performance field emitters and efficient anti-reflective layers.
    Yuan FW; Wang CY; Li GA; Chang SH; Chu LW; Chen LJ; Tuan HY
    Nanoscale; 2013 Oct; 5(20):9875-81. PubMed ID: 23979254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanostructures of Sn and their enhanced, shape-dependent superconducting properties.
    Hsu YJ; Lu SY; Lin YF
    Small; 2006 Feb; 2(2):268-73. PubMed ID: 17193034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and understanding of Cu
    Zheng Z; Wu HH; Chen H; Cheng Y; Zhang Q; Xie Q; Wang L; Zhang K; Wang MS; Peng DL; Zeng XC
    Nanoscale; 2018 Dec; 10(47):22203-22214. PubMed ID: 30277255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards promising modification of GeSi nanostructures via self-assembly on miscut Si(001) substrates.
    Zhou T; Zhong Z
    Nanotechnology; 2016 Mar; 27(11):115601. PubMed ID: 26871257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of Au film thickness and annealing conditions on the VLS-assisted growth of ZnO nanostructures.
    Govatsi K; Chrissanthopoulos A; Dracopoulos V; Yannopoulos SN
    Nanotechnology; 2014 May; 25(21):215601. PubMed ID: 24784032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical Nanoparticle Sorting Elucidates Synthesis of Plasmonic Nanotriangles.
    Huergo MA; Maier CM; Castez MF; Vericat C; Nedev S; Salvarezza RC; Urban AS; Feldmann J
    ACS Nano; 2016 Mar; 10(3):3614-21. PubMed ID: 26910123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shape Engineering Driven by Selective Growth of SnO
    Alonso-Orts M; Sánchez AM; Hindmarsh SA; López I; Nogales E; Piqueras J; Méndez B
    Nano Lett; 2017 Jan; 17(1):515-522. PubMed ID: 28001409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cu3Si@Si core-shell nanoparticles synthesized using a solid-state reaction and their performance as anode materials for lithium ion batteries.
    Zhou J; Lin N; Han Y; Zhou J; Zhu Y; Du J; Qian Y
    Nanoscale; 2015 Oct; 7(37):15075-9. PubMed ID: 26349812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanochemical synthesis of Si/Cu
    Hou SC; Chen TY; Wu YH; Chen HY; Lin XD; Chen YQ; Huang JL; Chang CC
    Sci Rep; 2018 Aug; 8(1):12695. PubMed ID: 30139990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A general lithography-free method of microscale/nanoscale fabrication and patterning on Si and Ge surfaces.
    Wang H; Wu T
    Nanoscale Res Lett; 2012 Feb; 7(1):110. PubMed ID: 22315969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dislocation-induced nanoparticle decoration on a GaN nanowire.
    Yang B; Yuan F; Liu Q; Huang N; Qiu J; Staedler T; Liu B; Jiang X
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2790-6. PubMed ID: 25562572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epitaxy-enabled vapor-liquid-solid growth of tin-doped indium oxide nanowires with controlled orientations.
    Shen Y; Turner S; Yang P; Van Tendeloo G; Lebedev OI; Wu T
    Nano Lett; 2014 Aug; 14(8):4342-51. PubMed ID: 24971997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vapor-solid growth of Sn nanowires: growth mechanism and superconductivity.
    Hsu YJ; Lu SY
    J Phys Chem B; 2005 Mar; 109(10):4398-403. PubMed ID: 16851508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphology- and orientation-controlled gallium arsenide nanowires on silicon substrates.
    Ihn SG; Song JI; Kim TW; Leem DS; Lee T; Lee SG; Koh EK; Song K
    Nano Lett; 2007 Jan; 7(1):39-44. PubMed ID: 17212437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast growth synthesis of GaAs nanowires with exceptional length.
    Ramdani MR; Gil E; Leroux Ch; André Y; Trassoudaine A; Castelluci D; Bideux L; Monier G; Robert-Goumet C; Kupka R
    Nano Lett; 2010 May; 10(5):1836-41. PubMed ID: 20380477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective growth of silica nanowires using an Au catalyst for optical recognition of interleukin-10.
    Sekhar PK; Ramgir NS; Joshi RK; Bhansali S
    Nanotechnology; 2008 Jun; 19(24):245502. PubMed ID: 21825812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complex-Morphology Metal-Based Nanostructures: Fabrication, Characterization, and Applications.
    Gentile A; Ruffino F; Grimaldi MG
    Nanomaterials (Basel); 2016 Jun; 6(6):. PubMed ID: 28335236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.