BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 18763998)

  • 1. Radial density distribution of the metastable supersaturated vapor via restricted ensemble simulations.
    Nie C; Marlow WH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 1):012101. PubMed ID: 18763998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The free energy of the metastable supersaturated vapor via restricted ensemble simulations. II. Effects of constraints and comparison with molecular dynamics simulations.
    Nie C; Geng J; Marlow WH
    J Chem Phys; 2008 Jun; 128(23):234310. PubMed ID: 18570502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The free energy of the metastable supersaturated vapor via restricted ensemble simulations.
    Nie C; Geng J; Marlow WH
    J Chem Phys; 2007 Oct; 127(15):154505. PubMed ID: 17949171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The free energy of the metastable supersaturated vapor via restricted ensemble simulations. III. An extension to the Corti and Debenedetti subcell constraint algorithm.
    Nie C; Geng J; Marlow WH
    J Chem Phys; 2016 Apr; 144(14):144503. PubMed ID: 27083734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of thermal properties of the metastable supersaturated vapor with the integral equation method.
    Nie C; Geng J; Marlow WH
    J Chem Phys; 2008 Feb; 128(5):054305. PubMed ID: 18266448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal properties of the metastable supersaturated vapor of the Lennard-Jones fluid.
    Linhart A; Chen CC; Vrabec J; Hasse H
    J Chem Phys; 2005 Apr; 122(14):144506. PubMed ID: 15847544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Equilibrium sizes and formation energies of small and large Lennard-Jones clusters from molecular dynamics: a consistent comparison to Monte Carlo simulations and density functional theories.
    Julin J; Napari I; Merikanto J; Vehkamäki H
    J Chem Phys; 2008 Dec; 129(23):234506. PubMed ID: 19102537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation of vapor-liquid coexistence in finite volumes: a method to compute the surface free energy of droplets.
    Schrader M; Virnau P; Binder K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 1):061104. PubMed ID: 19658470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of inhomogeneous Lennard-Jones fluid near the critical region and close to the vapor-liquid coexistence curve: Monte Carlo and density-functional theory studies.
    Zhou S; Jamnik A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 1):011202. PubMed ID: 16486128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generalized coupling parameter expansion: application to square well and Lennard-Jones fluids.
    Sai Venkata Ramana A
    J Chem Phys; 2013 Jul; 139(4):044106. PubMed ID: 23901959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular simulation study of cavity-generated instabilities in the superheated Lennard-Jones liquid.
    Torabi K; Corti DS
    J Chem Phys; 2010 Oct; 133(13):134505. PubMed ID: 20942544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate Monte Carlo simulations on FCC and HCP Lennard-Jones solids at very low temperatures and high reduced densities up to 1.30.
    Adidharma H; Tan SP
    J Chem Phys; 2016 Jul; 145(1):014503. PubMed ID: 27394113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase behavior of a confined nanodroplet in the grand-canonical ensemble: the reverse liquid-vapor transition.
    Lutsko JF; Laidet J; Grosfils P
    J Phys Condens Matter; 2010 Jan; 22(3):035101. PubMed ID: 21386277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical and computational investigations on thermodynamic properties, effective site diameters, and molecular free volume of carbon disulfide fluid.
    Eskandari Nasrabad A; Laghaei R
    J Chem Phys; 2006 Oct; 125(15):154505. PubMed ID: 17059270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metastable Lennard-Jones fluids. II. Thermal conductivity.
    Baidakov VG; Protsenko SP
    J Chem Phys; 2014 Jun; 140(21):214506. PubMed ID: 24908025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-diffusion coefficient of two-center Lennard-Jones fluids: molecular simulations and free volume theory.
    Nasrabad AE
    J Chem Phys; 2009 Jan; 130(2):024503. PubMed ID: 19154034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metastable Lennard-Jones fluids. I. Shear viscosity.
    Baidakov VG; Protsenko SP; Kozlova ZR
    J Chem Phys; 2012 Oct; 137(16):164507. PubMed ID: 23126730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of united-atom potentials for the simulation of vapor-liquid equilibria and interfacial properties of long-chain n-alkanes up to n-C100.
    Müller EA; Mejía A
    J Phys Chem B; 2011 Nov; 115(44):12822-34. PubMed ID: 21932822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural transitions and melting in LJ(74-78) Lennard-Jones clusters from adaptive exchange Monte Carlo simulations.
    Mandelshtam VA; Frantsuzov PA; Calvo F
    J Phys Chem A; 2006 Apr; 110(16):5326-32. PubMed ID: 16623459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Grand canonical Monte Carlo simulations of vapor-liquid equilibria using a bias potential from an analytic equation of state.
    Castillo Sanchez JM; Danner T; Gross J
    J Chem Phys; 2013 Jun; 138(23):234106. PubMed ID: 23802950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.