These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 18764001)

  • 1. Formation of fast spirals on heterogeneities of an excitable medium.
    Makkes van der Deijl GB; Panfilov AV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 1):012901. PubMed ID: 18764001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Annihilation and reflection of spiral waves at a boundary for the Beeler-Reuter model.
    Olmos D; Shizgal BD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031918. PubMed ID: 18517433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spiral-wave dynamics depend sensitively on inhomogeneities in mathematical models of ventricular tissue.
    Shajahan TK; Sinha S; Pandit R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011929. PubMed ID: 17358206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collision-based spiral acceleration in cardiac media: roles of wavefront curvature and excitable gap.
    Tranquillo JV; Badie N; Henriquez CS; Bursac N
    Biophys J; 2010 Apr; 98(7):1119-28. PubMed ID: 20371311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Critical fronts in initiation of excitation waves.
    Idris I; Biktashev VN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 1):021906. PubMed ID: 17930064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spiral waves in excitable media with negative restitution.
    Zemlin CW; Panfilov AV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr; 63(4 Pt 1):041912. PubMed ID: 11308882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pattern formation of coupled spiral waves in bilayer systems: rich dynamics and high-frequency dominance.
    Nie H; Gao J; Zhan M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056204. PubMed ID: 22181481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zero-refractoriness spirals in phase-coupled excitable media.
    Avalos E; Lai PY; Chan CK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):065202. PubMed ID: 20365219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hysteresis and bistability in periodically paced cardiac tissue.
    Huang X; Qian Y; Zhang X; Hu G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051903. PubMed ID: 20866257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of heterogeneities and intercellular coupling in wave propagation in cardiac tissue.
    Steinberg BE; Glass L; Shrier A; Bub G
    Philos Trans A Math Phys Eng Sci; 2006 May; 364(1842):1299-311. PubMed ID: 16608709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling far field pacing for terminating spiral waves pinned to ischaemic heterogeneities in cardiac tissue.
    Boccia E; Luther S; Parlitz U
    Philos Trans A Math Phys Eng Sci; 2017 Jun; 375(2096):. PubMed ID: 28507234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vulnerability in an excitable medium: analytical and numerical studies of initiating unidirectional propagation.
    Starmer CF; Biktashev VN; Romashko DN; Stepanov MR; Makarova ON; Krinsky VI
    Biophys J; 1993 Nov; 65(5):1775-87. PubMed ID: 8298011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induced spiral motion in cardiac tissue due to alternans.
    Cameron T; Davidsen J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061908. PubMed ID: 23367977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of spiral pairs induced by unidirectional propagating pulses.
    Rabinovitch A; Gutman M; Biton Y; Aviram I; Rosenbaum DS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 1):061904. PubMed ID: 17280093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effective control of excitable waves in 2D cardiac excitable media].
    Li L; Liu L; Zhang G; Wang G; Qu Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Dec; 22(6):1104-7. PubMed ID: 16422076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emitting waves from heterogeneity by a rotating electric field.
    Zhao YH; Lou Q; Chen JX; Sun WG; Ma J; Ying HP
    Chaos; 2013 Sep; 23(3):033141. PubMed ID: 24089977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wave block formation in homogeneous excitable media following premature excitations: dependence on restitution relations.
    Comtois P; Vinet A; Nattel S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 1):031919. PubMed ID: 16241494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coexistence of multiple spiral waves with independent frequencies in a heterogeneous excitable medium.
    Xie F; Qu Z; Weiss JN; Garfinkel A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 1):031905. PubMed ID: 11308676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boundary-induced reentry in homogeneous excitable tissue.
    Siso-Nadal F; Otani NF; Gilmour RF; Fox JJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 1):031925. PubMed ID: 18851083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting the entrainment of reentrant cardiac waves using phase resetting curves.
    Glass L; Nagai Y; Hall K; Talajic M; Nattel S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 1):021908. PubMed ID: 11863564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.