These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 18764001)

  • 21. Scaling properties of conduction velocity in heterogeneous excitable media.
    Shajahan TK; Borek B; Shrier A; Glass L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046208. PubMed ID: 22181246
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fast propagation regions cause self-sustained reentry in excitable media.
    Zykov V; Krekhov A; Bodenschatz E
    Proc Natl Acad Sci U S A; 2017 Feb; 114(6):1281-1286. PubMed ID: 28123066
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Initiation of re-entry in an excitable medium: structural investigation of cardiac tissue using a genetic algorithm.
    Scarle S; Clayton RH
    Chaos; 2006 Sep; 16(3):033115. PubMed ID: 17014220
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias.
    Nash MP; Panfilov AV
    Prog Biophys Mol Biol; 2004; 85(2-3):501-22. PubMed ID: 15142759
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Considerations in phase plane analysis for nonstationary reentrant cardiac behavior.
    Bray MA; Wikswo JP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 1):051902. PubMed ID: 12059588
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Of circles and spirals: bridging the gap between the leading circle and spiral wave concepts of cardiac reentry.
    Comtois P; Kneller J; Nattel S
    Europace; 2005 Sep; 7 Suppl 2():10-20. PubMed ID: 16102499
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reentry wave formation in excitable media with stochastically generated inhomogeneities.
    Kuklik P; Zebrowski JJ
    Chaos; 2005 Sep; 15(3):33301. PubMed ID: 16252987
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Patterns of spiral wave attenuation by low-frequency periodic planar fronts.
    de la Casa MA; de la Rubia FJ; Ivanov PCh
    Chaos; 2007 Mar; 17(1):015109. PubMed ID: 17411266
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spiral wave dynamics in excitable media with spherical geometries.
    Rohlf K; Glass L; Kapral R
    Chaos; 2006 Sep; 16(3):037115. PubMed ID: 17014249
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wave emission on interacting heterogeneities in cardiac tissue.
    Hörning M; Takagi S; Yoshikawa K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021926. PubMed ID: 20866856
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Negative filament tension in the Luo-Rudy model of cardiac tissue.
    Alonso S; Panfilov AV
    Chaos; 2007 Mar; 17(1):015102. PubMed ID: 17411259
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On propagation failure in one- and two-dimensional excitable media.
    Gottwald GA; Kramer L
    Chaos; 2004 Sep; 14(3):855-63. PubMed ID: 15446996
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spiral wave stability in cardiac tissue with biphasic restitution.
    Bernus O; Verschelde H; Panfilov AV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 1):021917. PubMed ID: 14525016
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interaction between spiral and paced waves in cardiac tissue.
    Agladze K; Kay MW; Krinsky V; Sarvazyan N
    Am J Physiol Heart Circ Physiol; 2007 Jul; 293(1):H503-13. PubMed ID: 17384124
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Basic mechanisms of cardiac impulse propagation and associated arrhythmias.
    Kléber AG; Rudy Y
    Physiol Rev; 2004 Apr; 84(2):431-88. PubMed ID: 15044680
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electroelastic unpinning of rotating vortices in biological excitable media.
    Cherubini C; Filippi S; Gizzi A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031915. PubMed ID: 22587131
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spiral wave breakup in excitable media with an inhomogeneity of conduction anisotropy.
    Kuklik P; Szumowski L; Sanders P; Zebrowski JJ
    Comput Biol Med; 2010 Sep; 40(9):775-80. PubMed ID: 20684951
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reentry as an Origin for Rotors.
    Rabinovitch A; Aviram I; Biton Y; Braunstein D
    Bull Math Biol; 2018 Nov; 80(11):3023-3037. PubMed ID: 30225592
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanism of spiral formation in heterogeneous discretized excitable media.
    Kinoshita S; Iwamoto M; Tateishi K; Suematsu NJ; Ueyama D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062815. PubMed ID: 23848737
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Helical deformation of the filament of a scroll wave.
    Kupitz D; Hauser MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066208. PubMed ID: 23368025
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.