These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 18764060)

  • 1. Onset of chaotic advection in open flows.
    Biemond JJ; de Moura AP; Károlyi G; Grebogi C; Nijmeijer H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 2):016317. PubMed ID: 18764060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite-size particles, advection, and chaos: a collective phenomenon of intermittent bursting.
    Medrano-T RO; Moura A; Tél T; Caldas IL; Grebogi C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 2):056206. PubMed ID: 19113199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using heteroclinic orbits to quantify topological entropy in fluid flows.
    Sattari S; Chen Q; Mitchell KA
    Chaos; 2016 Mar; 26(3):033112. PubMed ID: 27036190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Saddle-center and periodic orbit: Dynamics near symmetric heteroclinic connection.
    Lerman LM; Trifonov KN
    Chaos; 2021 Feb; 31(2):023113. PubMed ID: 33653062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bifurcations of orbit and inclination flips heteroclinic loop with nonhyperbolic equilibria.
    Geng F; Zhao J
    ScientificWorldJournal; 2014; 2014():585609. PubMed ID: 24987740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unstable periodic orbits and the natural measure of nonhyperbolic chaotic saddles.
    Dhamala M; Lai YC
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Nov; 60(5 Pt B):6176-9. PubMed ID: 11970527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite-size effects on open chaotic advection.
    Vilela RD; de Moura AP; Grebogi C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 2):026302. PubMed ID: 16605449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chaotic advection in a recirculating flow: Effect of a fluid-flexible-solid interaction.
    Prasad V; Kulkarni SS; Sharma A
    Chaos; 2022 Apr; 32(4):043122. PubMed ID: 35489862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chaos-hyperchaos transition.
    Kapitaniak T; Maistrenko Y; Popovych S
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Aug; 62(2 Pt A):1972-6. PubMed ID: 11088661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reacting particles in open chaotic flows.
    de Moura AP
    Phys Rev Lett; 2011 Dec; 107(27):274501. PubMed ID: 22243312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noise-induced unstable dimension variability and transition to chaos in random dynamical systems.
    Lai YC; Liu Z; Billings L; Schwartz IB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026210. PubMed ID: 12636779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stability of attractors formed by inertial particles in open chaotic flows.
    Do Y; Lai YC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 2):036203. PubMed ID: 15524608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An experimental and theoretical study of the mixing characteristics of a periodically reoriented irrotational flow.
    Metcalfe G; Lester D; Ord A; Kulkarni P; Rudman M; Trefry M; Hobbs B; Regenaur-Lieb K; Morris J
    Philos Trans A Math Phys Eng Sci; 2010 May; 368(1918):2147-62. PubMed ID: 20368238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increasing lifetimes and the growing saddles of shear flow turbulence.
    Kreilos T; Eckhardt B; Schneider TM
    Phys Rev Lett; 2014 Jan; 112(4):044503. PubMed ID: 24580458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective sensitivity of open chaotic flows on inertial tracer advection: catching particles with a stick.
    Benczik IJ; Toroczkai Z; Tél T
    Phys Rev Lett; 2002 Oct; 89(16):164501. PubMed ID: 12398726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient topological chaos embedded in the blinking vortex system.
    Kin E; Sakajo T
    Chaos; 2005 Jun; 15(2):23111. PubMed ID: 16035887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fractal structures in the chaotic advection of passive scalars in leaky planar hydrodynamical flows.
    Viana RL; Mathias AC; Souza LC; Haerter P
    Chaos; 2024 May; 34(5):. PubMed ID: 38805322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Population dynamics advected by chaotic flows: A discrete-time map approach.
    Lopez C; Hernandez-Garcia E; Piro O; Vulpiani A; Zambianchi E
    Chaos; 2001 Jun; 11(2):397-403. PubMed ID: 12779474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite-size effects on active chaotic advection.
    Nishikawa T; Toroczkai Z; Grebogi C; Tél T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 2):026216. PubMed ID: 11863641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unbounded dynamics in dissipative flows: Rössler model.
    Barrio R; Blesa F; Serrano S
    Chaos; 2014 Jun; 24(2):024407. PubMed ID: 24985461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.