These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 18764060)
1. Onset of chaotic advection in open flows. Biemond JJ; de Moura AP; Károlyi G; Grebogi C; Nijmeijer H Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 2):016317. PubMed ID: 18764060 [TBL] [Abstract][Full Text] [Related]
2. Finite-size particles, advection, and chaos: a collective phenomenon of intermittent bursting. Medrano-T RO; Moura A; Tél T; Caldas IL; Grebogi C Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 2):056206. PubMed ID: 19113199 [TBL] [Abstract][Full Text] [Related]
3. Using heteroclinic orbits to quantify topological entropy in fluid flows. Sattari S; Chen Q; Mitchell KA Chaos; 2016 Mar; 26(3):033112. PubMed ID: 27036190 [TBL] [Abstract][Full Text] [Related]
10. Reacting particles in open chaotic flows. de Moura AP Phys Rev Lett; 2011 Dec; 107(27):274501. PubMed ID: 22243312 [TBL] [Abstract][Full Text] [Related]
11. Noise-induced unstable dimension variability and transition to chaos in random dynamical systems. Lai YC; Liu Z; Billings L; Schwartz IB Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026210. PubMed ID: 12636779 [TBL] [Abstract][Full Text] [Related]
12. Stability of attractors formed by inertial particles in open chaotic flows. Do Y; Lai YC Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 2):036203. PubMed ID: 15524608 [TBL] [Abstract][Full Text] [Related]
13. An experimental and theoretical study of the mixing characteristics of a periodically reoriented irrotational flow. Metcalfe G; Lester D; Ord A; Kulkarni P; Rudman M; Trefry M; Hobbs B; Regenaur-Lieb K; Morris J Philos Trans A Math Phys Eng Sci; 2010 May; 368(1918):2147-62. PubMed ID: 20368238 [TBL] [Abstract][Full Text] [Related]
14. Increasing lifetimes and the growing saddles of shear flow turbulence. Kreilos T; Eckhardt B; Schneider TM Phys Rev Lett; 2014 Jan; 112(4):044503. PubMed ID: 24580458 [TBL] [Abstract][Full Text] [Related]
15. Selective sensitivity of open chaotic flows on inertial tracer advection: catching particles with a stick. Benczik IJ; Toroczkai Z; Tél T Phys Rev Lett; 2002 Oct; 89(16):164501. PubMed ID: 12398726 [TBL] [Abstract][Full Text] [Related]
16. Efficient topological chaos embedded in the blinking vortex system. Kin E; Sakajo T Chaos; 2005 Jun; 15(2):23111. PubMed ID: 16035887 [TBL] [Abstract][Full Text] [Related]
17. Fractal structures in the chaotic advection of passive scalars in leaky planar hydrodynamical flows. Viana RL; Mathias AC; Souza LC; Haerter P Chaos; 2024 May; 34(5):. PubMed ID: 38805322 [TBL] [Abstract][Full Text] [Related]
18. Population dynamics advected by chaotic flows: A discrete-time map approach. Lopez C; Hernandez-Garcia E; Piro O; Vulpiani A; Zambianchi E Chaos; 2001 Jun; 11(2):397-403. PubMed ID: 12779474 [TBL] [Abstract][Full Text] [Related]
19. Finite-size effects on active chaotic advection. Nishikawa T; Toroczkai Z; Grebogi C; Tél T Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 2):026216. PubMed ID: 11863641 [TBL] [Abstract][Full Text] [Related]