These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 18764085)

  • 1. Modeling shock waves in an ideal gas: combining the Burnett approximation and Holian's conjecture.
    He YG; Tang XZ; Pu YK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 2):017301. PubMed ID: 18764085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Going beyond an old shockwave conjecture for improving upon Navier-Stokes.
    Holian BL; Mareschal M; Ravelo R
    Phys Rev E; 2024 Jul; 110(1-2):015105. PubMed ID: 39161003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Burnett-Cattaneo continuum theory for shock waves.
    Holian BL; Mareschal M; Ravelo R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 2):026703. PubMed ID: 21405926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simple and accurate theory for strong shock waves in a dense hard-sphere fluid.
    Montanero JM; López de Haro M; Santos A; Garzó V
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Dec; 60(6 Pt B):7592-5. PubMed ID: 11970718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Burnett description for plane Poiseuille flow.
    Uribe FJ; Garcia AL
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Oct; 60(4 Pt A):4063-78. PubMed ID: 11970243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong shock as a stringent test for Onsager-Burnett equations.
    Jadhav RS; Agrawal A
    Phys Rev E; 2020 Dec; 102(6-1):063111. PubMed ID: 33466076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shock wave profiles in the burnett approximation.
    Uribe FJ; Velasco RM; Garcia-Colin LS; Diaz-Herrera E
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Nov; 62(5 Pt A):6648-66. PubMed ID: 11102002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local equilibrium in liquid phase shock waves.
    Maltby TW; Hafskjold B; Bedeaux D; Kjelstrup S; Wilhelmsen Ø
    Phys Rev E; 2023 Mar; 107(3-2):035108. PubMed ID: 37073064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heat-flow equation motivated by the ideal-gas shock wave.
    Holian BL; Mareschal M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 2):026707. PubMed ID: 20866940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of strong-shock structure using the bimodal distribution function.
    Solovchuk MA; Sheu TW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 2):026301. PubMed ID: 21405900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of shock structure using the bimodal distribution function.
    Solovchuk MA; Sheu TW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 2):056314. PubMed ID: 20866329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiscale gas-kinetic simulation for continuum and near-continuum flows.
    Xu K; Liu H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 2):016306. PubMed ID: 17358252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Test of a new heat-flow equation for dense-fluid shock waves.
    Holian BL; Mareschal M; Ravelo R
    J Chem Phys; 2010 Sep; 133(11):114502. PubMed ID: 20866140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theory and simulation of shock waves: Entropy production and energy conversion.
    Hafskjold B; Bedeaux D; Kjelstrup S; Wilhelmsen Ø
    Phys Rev E; 2021 Jul; 104(1-1):014131. PubMed ID: 34412362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generalized hydrodynamic theory of shock waves in rigid diatomic gases.
    Al-Ghoul M; Eu BC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 2):046303. PubMed ID: 11690142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imploding shock wave in a fluid of hard-core particles.
    Gaspard P; Lutsko J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 2):026306. PubMed ID: 15447587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonequilibrium molecular dynamics simulation of pressure-driven water transport through modified CNT membranes.
    Wang L; Dumont RS; Dickson JM
    J Chem Phys; 2013 Mar; 138(12):124701. PubMed ID: 23556736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lattice Boltzmann simulation of nonequilibrium effects in oscillatory gas flow.
    Tang GH; Gu XJ; Barber RW; Emerson DR; Zhang YH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 2):026706. PubMed ID: 18850972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-temperature Navier-Stokes equations for a polyatomic gas derived from kinetic theory.
    Aoki K; Bisi M; Groppi M; Kosuge S
    Phys Rev E; 2020 Aug; 102(2-1):023104. PubMed ID: 32942393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The direct simulation of acoustics on Earth, Mars, and Titan.
    Hanford AD; Long LN
    J Acoust Soc Am; 2009 Feb; 125(2):640-50. PubMed ID: 19206842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.