These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 18764115)

  • 1. Atomic-scale time and space resolution of terahertz frequency acoustic waves.
    Reed EJ; Armstrong MR; Kim KY; Glownia JH
    Phys Rev Lett; 2008 Jul; 101(1):014302. PubMed ID: 18764115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coherent optical photons from shock waves in crystals.
    Reed EJ; Soljacić M; Gee R; Joannopoulos JD
    Phys Rev Lett; 2006 Jan; 96(1):013904. PubMed ID: 16486456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterostructure terahertz devices.
    Ryzhii V
    J Phys Condens Matter; 2008 Aug; 20(38):380301. PubMed ID: 21693805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Broadband terahertz ultrasonic transducer based on a laser-driven piezoelectric semiconductor superlattice.
    Maznev AA; Manke KJ; Lin KH; Nelson KA; Sun CK; Chyi JI
    Ultrasonics; 2012 Jan; 52(1):1-4. PubMed ID: 21872899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The structural properties of GaN/AlN core-shell nanocolumn heterostructures.
    Hestroffer K; Mata R; Camacho D; Leclere C; Tourbot G; Niquet YM; Cros A; Bougerol C; Renevier H; Daudin B
    Nanotechnology; 2010 Oct; 21(41):415702. PubMed ID: 20844326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Orientation dependence in molecular dynamics simulations of shocked single crystals.
    Germann TC; Holian BL; Lomdahl PS; Ravelo R
    Phys Rev Lett; 2000 Jun; 84(23):5351-4. PubMed ID: 10990941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maxwell equation simulations of coherent optical photon emission from shock waves in crystals.
    Reed EJ; Soljacić M; Joannopoulos JD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 2):056611. PubMed ID: 17677190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structural properties of GaN insertions in GaN/AlN nanocolumn heterostructures.
    Bougerol C; Songmuang R; Camacho D; Niquet YM; Mata R; Cros A; Daudin B
    Nanotechnology; 2009 Jul; 20(29):295706. PubMed ID: 19567953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gigahertz acoustic wave velocity measurement in GaN single crystals considering acousto-electric effect.
    Ichihashi H; Yanagitani T; Takayanagi S; Kawabe M; Matsukawa M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Aug; 61(8):1307-13. PubMed ID: 25073138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anharmonic damping of terahertz acoustic waves in a network glass and its effect on the density of vibrational states.
    Baldi G; Giordano VM; Ruta B; Dal Maschio R; Fontana A; Monaco G
    Phys Rev Lett; 2014 Mar; 112(12):125502. PubMed ID: 24724658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultracompact interference phonon nanocapacitor for storage and lasing of coherent terahertz lattice waves.
    Han H; Li B; Volz S; Kosevich YA
    Phys Rev Lett; 2015 Apr; 114(14):145501. PubMed ID: 25910135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Viscously damped acoustic waves with the lattice Boltzmann method.
    Viggen EM
    Philos Trans A Math Phys Eng Sci; 2011 Jun; 369(1944):2246-54. PubMed ID: 21536571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [An effective method for improving the imaging spatial resolution of terahertz time domain spectroscopy system].
    Zhang ZY; Ji T; Zhu ZY; Zhao HW; Chen M; Xiao TQ; Guo Z
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jan; 35(1):1-4. PubMed ID: 25993808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum state engineering with ultra-short-period (AlN)m/(GaN)n superlattices for narrowband deep-ultraviolet detection.
    Gao N; Lin W; Chen X; Huang K; Li S; Li J; Chen H; Yang X; Ji L; Yu ET; Kang J
    Nanoscale; 2014 Dec; 6(24):14733-9. PubMed ID: 25352426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synchronizing terahertz wave generation with attosecond bursts.
    Zhang D; Lü Z; Meng C; Du X; Zhou Z; Zhao Z; Yuan J
    Phys Rev Lett; 2012 Dec; 109(24):243002. PubMed ID: 23368313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Note: Coherent detection of terahertz radiation employing a continuous wave optical parametric source.
    Kiessling J; Sowade R; Mayorga IC; Buse K; Breunig I
    Rev Sci Instrum; 2011 Feb; 82(2):026108. PubMed ID: 21361647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suitability of surface acoustic wave oscillators fabricated using low temperature-grown AlN films on GaN/sapphire as UV sensors.
    Chen TC; Lin YT; Lin CY; Chen WC; Chen MR; Kao HL; Chyi JI; Hsu CH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Feb; 55(2):489-93. PubMed ID: 18334354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variation of second-order piezoelectric coefficients with respect to a finite strain measure.
    Jurczak G
    Acta Crystallogr A Found Adv; 2018 Sep; 74(Pt 5):518-523. PubMed ID: 30182938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Terahertz difference-frequency generation by tilted amplitude front excitation.
    Bakunov MI; Tsarev MV; Mashkovich EA
    Opt Express; 2012 Dec; 20(27):28573-85. PubMed ID: 23263095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical generation of gigahertz-frequency shear acoustic waves in liquid glycerol.
    Pezeril T; Klieber C; Andrieu S; Nelson KA
    Phys Rev Lett; 2009 Mar; 102(10):107402. PubMed ID: 19392158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.