These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 18764315)

  • 21. The characteristic blue spectra of accretion disks in quasars as uncovered in the infrared.
    Kishimoto M; Antonucci R; Blaes O; Lawrence A; Boisson C; Albrecht M; Leipski C
    Nature; 2008 Jul; 454(7203):492-4. PubMed ID: 18650919
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Black hole-neutron star coalescence: Effects of the neutron star spin on jet launching and dynamical ejecta mass.
    Ruiz M; Paschalidis V; Tsokaros A; Shapiro SL
    Phys Rev D; 2020 Dec; 102(12):. PubMed ID: 34595362
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Constraining the Lensing of Binary Black Holes from Their Stochastic Background.
    Buscicchio R; Moore CJ; Pratten G; Schmidt P; Bianconi M; Vecchio A
    Phys Rev Lett; 2020 Oct; 125(14):141102. PubMed ID: 33064507
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The corona contracts in a black-hole transient.
    Kara E; Steiner JF; Fabian AC; Cackett EM; Uttley P; Remillard RA; Gendreau KC; Arzoumanian Z; Altamirano D; Eikenberry S; Enoto T; Homan J; Neilsen J; Stevens AL
    Nature; 2019 Jan; 565(7738):198-201. PubMed ID: 30626944
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reflection from the strong gravity regime in a lensed quasar at redshift z = 0.658.
    Reis RC; Reynolds MT; Miller JM; Walton DJ
    Nature; 2014 Mar; 507(7491):207-9. PubMed ID: 24598545
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Relativistic reverberation in the accretion flow of a tidal disruption event.
    Kara E; Miller JM; Reynolds C; Dai L
    Nature; 2016 Jul; 535(7612):388-90. PubMed ID: 27338795
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Black holes, disks, and jets following binary mergers and stellar collapse: The narrow range of electromagnetic luminosities and accretion rates.
    Shapiro SL
    Phys Rev D; 2017 May; 95(10):. PubMed ID: 29881790
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electromagnetic emission from circumbinary disk of merging black holes.
    Bisikalo DV; Zhilkin AG
    An Acad Bras Cienc; 2021; 93(suppl 1):e20200801. PubMed ID: 34008764
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cold, clumpy accretion onto an active supermassive black hole.
    Tremblay GR; Oonk JB; Combes F; Salomé P; O'Dea C; Baum SA; Voit GM; Donahue M; McNamara BR; Davis TA; McDonald MA; Edge AC; Clarke TE; Galván-Madrid R; Bremer MN; Edwards LO; Fabian AC; Hamer S; Li Y; Maury A; Russell HR; Quillen AC; Urry CM; Sanders JS; Wise MW
    Nature; 2016 Jun; 534(7606):218-21. PubMed ID: 27279215
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Supermassive black holes do not correlate with galaxy disks or pseudobulges.
    Kormendy J; Bender R; Cornell ME
    Nature; 2011 Jan; 469(7330):374-6. PubMed ID: 21248845
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre.
    Doeleman SS; Weintroub J; Rogers AE; Plambeck R; Freund R; Tilanus RP; Friberg P; Ziurys LM; Moran JM; Corey B; Young KH; Smythe DL; Titus M; Marrone DP; Cappallo RJ; Bock DC; Bower GC; Chamberlin R; Davis GR; Krichbaum TP; Lamb J; Maness H; Niell AE; Roy A; Strittmatter P; Werthimer D; Whitney AR; Woody D
    Nature; 2008 Sep; 455(7209):78-80. PubMed ID: 18769434
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tracing black hole mergers through radio lobe morphology.
    Merritt D; Ekers RD
    Science; 2002 Aug; 297(5585):1310-3. PubMed ID: 12154199
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A characteristic optical variability time scale in astrophysical accretion disks.
    Burke CJ; Shen Y; Blaes O; Gammie CF; Horne K; Jiang YF; Liu X; McHardy IM; Morgan CW; Scaringi S; Yang Q
    Science; 2021 Aug; 373(6556):789-792. PubMed ID: 34385395
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Strong disk winds traced throughout outbursts in black-hole X-ray binaries.
    Tetarenko BE; Lasota JP; Heinke CO; Dubus G; Sivakoff GR
    Nature; 2018 Feb; 554(7690):69-72. PubMed ID: 29364880
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Foundations of Black Hole Accretion Disk Theory.
    Abramowicz MA; Fragile PC
    Living Rev Relativ; 2013; 16(1):1. PubMed ID: 28179840
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Light bending and X-ray echoes from behind a supermassive black hole.
    Wilkins DR; Gallo LC; Costantini E; Brandt WN; Blandford RD
    Nature; 2021 Jul; 595(7869):657-660. PubMed ID: 34321670
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Astrometric Search Method for Individually Resolvable Gravitational Wave Sources with Gaia.
    Moore CJ; Mihaylov DP; Lasenby A; Gilmore G
    Phys Rev Lett; 2017 Dec; 119(26):261102. PubMed ID: 29328688
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Advection-dominated Inflow/Outflows from Evaporating Accretion Disks.
    Turolla R; Dullemond CP
    Astrophys J; 2000 Mar; 531(1):L49-L52. PubMed ID: 10673412
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Binary Black Hole Mergers from Planet-like Migrations.
    Gould A; Rix HW
    Astrophys J; 2000 Mar; 532(1):L29-L32. PubMed ID: 10702125
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Measuring the spin of black holes in binary systems using gravitational waves.
    Vitale S; Lynch R; Veitch J; Raymond V; Sturani R
    Phys Rev Lett; 2014 Jun; 112(25):251101. PubMed ID: 25014800
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.