These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 18764441)

  • 1. Pattern formation in mixtures of ultracold atoms in optical lattices.
    Maśka MM; Lemański R; Freericks JK; Williams CJ
    Phys Rev Lett; 2008 Aug; 101(6):060404. PubMed ID: 18764441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advantages of mass-imbalanced ultracold fermionic mixtures for approaching quantum magnetism in optical lattices.
    Sotnikov A; Cocks D; Hofstetter W
    Phys Rev Lett; 2012 Aug; 109(6):065301. PubMed ID: 23006278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spin gradient thermometry for ultracold atoms in optical lattices.
    Weld DM; Medley P; Miyake H; Hucul D; Pritchard DE; Ketterle W
    Phys Rev Lett; 2009 Dec; 103(24):245301. PubMed ID: 20366208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling ultracold matter to dynamical gauge fields in optical lattices: From flux attachment to ℤ
    Barbiero L; Schweizer C; Aidelsburger M; Demler E; Goldman N; Grusdt F
    Sci Adv; 2019 Oct; 5(10):eaav7444. PubMed ID: 31646173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Universal thermometry for quantum simulation.
    Zhou Q; Ho TL
    Phys Rev Lett; 2011 Jun; 106(22):225301. PubMed ID: 21702611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observation of quantum criticality with ultracold atoms in optical lattices.
    Zhang X; Hung CL; Tung SK; Chin C
    Science; 2012 Mar; 335(6072):1070-2. PubMed ID: 22345397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultracold atoms in optical lattices with random on-site interactions.
    Gimperlein H; Wessel S; Schmiedmayer J; Santos L
    Phys Rev Lett; 2005 Oct; 95(17):170401. PubMed ID: 16383798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mott domains of bosons confined on optical lattices.
    Batrouni GG; Rousseau V; Scalettar RT; Rigol M; Muramatsu A; Denteneer PJ; Troyer M
    Phys Rev Lett; 2002 Sep; 89(11):117203. PubMed ID: 12225165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Do mixtures of bosonic and fermionic atoms adiabatically heat up in optical lattices?
    Cramer M; Ospelkaus S; Ospelkaus C; Bongs K; Sengstock K; Eisert J
    Phys Rev Lett; 2008 Apr; 100(14):140409. PubMed ID: 18518014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Local quantum criticality in confined fermions on optical lattices.
    Rigol M; Muramatsu A; Batrouni GG; Scalettar RT
    Phys Rev Lett; 2003 Sep; 91(13):130403. PubMed ID: 14525290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase-sensitive measurements of order parameters for ultracold atoms through two-particle interferometry.
    Kitagawa T; Aspect A; Greiner M; Demler E
    Phys Rev Lett; 2011 Mar; 106(11):115302. PubMed ID: 21469872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum coherence and entanglement with ultracold atoms in optical lattices.
    Bloch I
    Nature; 2008 Jun; 453(7198):1016-22. PubMed ID: 18563152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic-film atom chip with 10 μm period lattices of microtraps for quantum information science with Rydberg atoms.
    Leung VY; Pijn DR; Schlatter H; Torralbo-Campo L; La Rooij AL; Mulder GB; Naber J; Soudijn ML; Tauschinsky A; Abarbanel C; Hadad B; Golan E; Folman R; Spreeuw RJ
    Rev Sci Instrum; 2014 May; 85(5):053102. PubMed ID: 24880348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices.
    Aidelsburger M; Atala M; Lohse M; Barreiro JT; Paredes B; Bloch I
    Phys Rev Lett; 2013 Nov; 111(18):185301. PubMed ID: 24237530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical ferris wheel for ultracold atoms.
    Franke-Arnold S; Leach J; Padgett MJ; Lembessis VE; Ellinas D; Wright AJ; Girkin JM; Ohberg P; Arnold AS
    Opt Express; 2007 Jul; 15(14):8619-25. PubMed ID: 19547196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultracold atoms in a tunable optical kagome lattice.
    Jo GB; Guzman J; Thomas CK; Hosur P; Vishwanath A; Stamper-Kurn DM
    Phys Rev Lett; 2012 Jan; 108(4):045305. PubMed ID: 22400856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-resolved observation and control of superexchange interactions with ultracold atoms in optical lattices.
    Trotzky S; Cheinet P; Fölling S; Feld M; Schnorrberger U; Rey AM; Polkovnikov A; Demler EA; Lukin MD; Bloch I
    Science; 2008 Jan; 319(5861):295-9. PubMed ID: 18096767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoplasmonic lattices for ultracold atoms.
    Gullans M; Tiecke TG; Chang DE; Feist J; Thompson JD; Cirac JI; Zoller P; Lukin MD
    Phys Rev Lett; 2012 Dec; 109(23):235309. PubMed ID: 23368223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum entangled dark solitons formed by ultracold atoms in optical lattices.
    Mishmash RV; Carr LD
    Phys Rev Lett; 2009 Oct; 103(14):140403. PubMed ID: 19905550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of inhomogeneous distributions of ultracold atoms in an optical lattice via a massively parallel implementation of nonequilibrium strong-coupling perturbation theory.
    Dirks A; Mikelsons K; Krishnamurthy HR; Freericks JK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):023306. PubMed ID: 25353604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.