These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 18764451)

  • 1. Exploring local quantum many-body relaxation by atoms in optical superlattices.
    Cramer M; Flesch A; McCulloch IP; Schollwöck U; Eisert J
    Phys Rev Lett; 2008 Aug; 101(6):063001. PubMed ID: 18764451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermalization of a strongly interacting closed spin system: from coherent many-body dynamics to a Fokker-Planck equation.
    Ates C; Garrahan JP; Lesanovsky I
    Phys Rev Lett; 2012 Mar; 108(11):110603. PubMed ID: 22540451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and detection of magnetic quantum phases in optical superlattices.
    Rey AM; Gritsev V; Bloch I; Demler E; Lukin MD
    Phys Rev Lett; 2007 Oct; 99(14):140601. PubMed ID: 17930655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exact relaxation in a class of nonequilibrium quantum lattice systems.
    Cramer M; Dawson CM; Eisert J; Osborne TJ
    Phys Rev Lett; 2008 Jan; 100(3):030602. PubMed ID: 18232957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spin Models, Dynamics, and Criticality with Atoms in Tilted Optical Superlattices.
    Buyskikh AS; Tagliacozzo L; Schuricht D; Hooley CA; Pekker D; Daley AJ
    Phys Rev Lett; 2019 Aug; 123(9):090401. PubMed ID: 31524491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluctuation Theorem for Many-Body Pure Quantum States.
    Iyoda E; Kaneko K; Sagawa T
    Phys Rev Lett; 2017 Sep; 119(10):100601. PubMed ID: 28949188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum thermalization through entanglement in an isolated many-body system.
    Kaufman AM; Tai ME; Lukin A; Rispoli M; Schittko R; Preiss PM; Greiner M
    Science; 2016 Aug; 353(6301):794-800. PubMed ID: 27540168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermalization and its mechanism for generic isolated quantum systems.
    Rigol M; Dunjko V; Olshanii M
    Nature; 2008 Apr; 452(7189):854-8. PubMed ID: 18421349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observation of coherent quench dynamics in a metallic many-body state of fermionic atoms.
    Will S; Iyer D; Rigol M
    Nat Commun; 2015 Jan; 6():6009. PubMed ID: 25625799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rydberg rings.
    Olmos B; Lesanovsky I
    Phys Chem Chem Phys; 2011 Mar; 13(10):4208-19. PubMed ID: 21279207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analyzing Nonequilibrium Quantum States through Snapshots with Artificial Neural Networks.
    Bohrdt A; Kim S; Lukin A; Rispoli M; Schittko R; Knap M; Greiner M; Léonard J
    Phys Rev Lett; 2021 Oct; 127(15):150504. PubMed ID: 34678012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detailed Balance of Thermalization Dynamics in Rydberg-Atom Quantum Simulators.
    Kim H; Park Y; Kim K; Sim HS; Ahn J
    Phys Rev Lett; 2018 May; 120(18):180502. PubMed ID: 29775353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Equilibrium states of open quantum systems in the strong coupling regime.
    Subaşı Y; Fleming CH; Taylor JM; Hu BL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061132. PubMed ID: 23367918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emulating Many-Body Localization with a Superconducting Quantum Processor.
    Xu K; Chen JJ; Zeng Y; Zhang YR; Song C; Liu W; Guo Q; Zhang P; Xu D; Deng H; Huang K; Wang H; Zhu X; Zheng D; Fan H
    Phys Rev Lett; 2018 Feb; 120(5):050507. PubMed ID: 29481152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exact Thermalization Dynamics in the "Rule 54" Quantum Cellular Automaton.
    Klobas K; Bertini B; Piroli L
    Phys Rev Lett; 2021 Apr; 126(16):160602. PubMed ID: 33961472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong and weak thermalization of infinite nonintegrable quantum systems.
    Bañuls MC; Cirac JI; Hastings MB
    Phys Rev Lett; 2011 Feb; 106(5):050405. PubMed ID: 21405381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observation of Thermalization and Information Scrambling in a Superconducting Quantum Processor.
    Zhu Q; Sun ZH; Gong M; Chen F; Zhang YR; Wu Y; Ye Y; Zha C; Li S; Guo S; Qian H; Huang HL; Yu J; Deng H; Rong H; Lin J; Xu Y; Sun L; Guo C; Li N; Liang F; Peng CZ; Fan H; Zhu X; Pan JW
    Phys Rev Lett; 2022 Apr; 128(16):160502. PubMed ID: 35522497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macroscopically deterministic Markovian thermalization in finite quantum spin systems.
    Niemeyer H; Michielsen K; De Raedt H; Gemmer J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012131. PubMed ID: 24580196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Steepest entropy ascent model for far-nonequilibrium thermodynamics: unified implementation of the maximum entropy production principle.
    Beretta GP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042113. PubMed ID: 25375444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emergent thermodynamics in a quenched quantum many-body system.
    Dorner R; Goold J; Cormick C; Paternostro M; Vedral V
    Phys Rev Lett; 2012 Oct; 109(16):160601. PubMed ID: 23215064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.