These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Optical Manipulation of Liquids by Thermal Marangoni Flow along the Air-Water Interfaces of a Superhydrophobic Surface. Gao A; Butt HJ; Steffen W; Schönecker C Langmuir; 2021 Jul; 37(29):8677-8686. PubMed ID: 34256567 [TBL] [Abstract][Full Text] [Related]
7. Electro-osmotic flow over a charged superhydrophobic surface. Zhao H Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066314. PubMed ID: 20866529 [TBL] [Abstract][Full Text] [Related]
8. Aqueous electrolytes near hydrophobic surfaces: dynamic effects of ion specificity and hydrodynamic slip. Huang DM; Cottin-Bizonne C; Ybert C; Bocquet L Langmuir; 2008 Feb; 24(4):1442-50. PubMed ID: 18052395 [TBL] [Abstract][Full Text] [Related]
9. Diffusio-osmosis and wetting on solid surfaces: a unified description based on a virtual work principle. Clarke N; Gibbions N; Long DR Soft Matter; 2020 Apr; 16(14):3485-3497. PubMed ID: 32211702 [TBL] [Abstract][Full Text] [Related]
10. Electro-osmosis at inhomogeneous charged surfaces: hydrodynamic versus electric friction. Kim YW; Netz RR J Chem Phys; 2006 Mar; 124(11):114709. PubMed ID: 16555912 [TBL] [Abstract][Full Text] [Related]
11. Non-Negligible Diffusio-Osmosis Inside an Ion Concentration Polarization Layer. Cho I; Kim W; Kim J; Kim HY; Lee H; Kim SJ Phys Rev Lett; 2016 Jun; 116(25):254501. PubMed ID: 27391727 [TBL] [Abstract][Full Text] [Related]
12. Interfacial transport with mobile surface charges and consequences for ionic transport in carbon nanotubes. Mouterde T; Bocquet L Eur Phys J E Soft Matter; 2018 Dec; 41(12):148. PubMed ID: 30564898 [TBL] [Abstract][Full Text] [Related]
13. Osmotic flow through fully permeable nanochannels. Lee C; Cottin-Bizonne C; Biance AL; Joseph P; Bocquet L; Ybert C Phys Rev Lett; 2014 Jun; 112(24):244501. PubMed ID: 24996091 [TBL] [Abstract][Full Text] [Related]
14. Transverse flow in thin superhydrophobic channels. Feuillebois F; Bazant MZ; Vinogradova OI Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 2):055301. PubMed ID: 21230537 [TBL] [Abstract][Full Text] [Related]
15. Generic transport coefficients of a confined electrolyte solution. Yoshida H; Mizuno H; Kinjo T; Washizu H; Barrat JL Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052113. PubMed ID: 25493746 [TBL] [Abstract][Full Text] [Related]
16. Osmotic and diffusio-osmotic flow generation at high solute concentration. I. Mechanical approaches. Marbach S; Yoshida H; Bocquet L J Chem Phys; 2017 May; 146(19):194701. PubMed ID: 28527459 [TBL] [Abstract][Full Text] [Related]
17. AC electro-osmotic mixing induced by non-contact external electrodes. Wang SC; Chen HP; Lee CY; Yu CC; Chang HC Biosens Bioelectron; 2006 Oct; 22(4):563-7. PubMed ID: 16837182 [TBL] [Abstract][Full Text] [Related]
18. Thermocapillary flow on superhydrophobic surfaces. Baier T; Steffes C; Hardt S Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):037301. PubMed ID: 21230215 [TBL] [Abstract][Full Text] [Related]
19. Interfacially driven transport theory: a way to unify Marangoni and osmotic flows. Bacchin P; Glavatskiy K; Gerbaud V Phys Chem Chem Phys; 2019 May; 21(19):10114-10124. PubMed ID: 31062788 [TBL] [Abstract][Full Text] [Related]
20. Osmotic and diffusio-osmotic flow generation at high solute concentration. II. Molecular dynamics simulations. Yoshida H; Marbach S; Bocquet L J Chem Phys; 2017 May; 146(19):194702. PubMed ID: 28527431 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]