BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 18764507)

  • 1. Morphogenesis of growing soft tissues.
    Dervaux J; Ben Amar M
    Phys Rev Lett; 2008 Aug; 101(6):068101. PubMed ID: 18764507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A rheological network model for the continuum anisotropic and viscoelastic behavior of soft tissue.
    Bischoff JE; Arruda EM; Grosh K
    Biomech Model Mechanobiol; 2004 Sep; 3(1):56-65. PubMed ID: 15278837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stress-dependent finite growth in soft elastic tissues.
    Rodriguez EK; Hoger A; McCulloch AD
    J Biomech; 1994 Apr; 27(4):455-67. PubMed ID: 8188726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A fibre reorientation model for orthotropic multiplicative growth. Configurational driving stresses, kinematics-based reorientation, and algorithmic aspects.
    Menzel A
    Biomech Model Mechanobiol; 2007 Sep; 6(5):303-20. PubMed ID: 17149642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth patterns for shape-shifting elastic bilayers.
    van Rees WM; Vouga E; Mahadevan L
    Proc Natl Acad Sci U S A; 2017 Oct; 114(44):11597-11602. PubMed ID: 29078336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morpho-elastodynamics: the long-time dynamics of elastic growth.
    Vandiver R; Goriely A
    J Biol Dyn; 2009 Mar; 3(2-3):180-95. PubMed ID: 22880828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the nonlinear elastic properties of soft tissues using the supersonic shear imaging (SSI) technique: inverse method, ex vivo and in vivo experiments.
    Jiang Y; Li GY; Qian LX; Hu XD; Liu D; Liang S; Cao Y
    Med Image Anal; 2015 Feb; 20(1):97-111. PubMed ID: 25476413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Föppl-von Kármán equations of elastic plates with initial stress.
    Ciarletta P; Pozzi G; Riccobelli D
    R Soc Open Sci; 2022 May; 9(5):220421. PubMed ID: 35600425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling of elastic modulus evolution of cirrhotic human liver.
    Yin HM; Sun LZ; Wang G; Vannier MW
    IEEE Trans Biomed Eng; 2004 Oct; 51(10):1854-6. PubMed ID: 15490833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes.
    Spilker RL; de Almeida ES; Donzelli PS
    Crit Rev Biomed Eng; 1992; 20(3-4):279-313. PubMed ID: 1478094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic finite element implementation of nonlinear, anisotropic hyperelastic biological membranes.
    Einstein DR; Reinhall P; Nicosia M; Cochran RP; Kunzelman K
    Comput Methods Biomech Biomed Engin; 2003 Feb; 6(1):33-44. PubMed ID: 12623436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visco-hyperelastic law for finite deformations: a frequency analysis.
    Charlebois M; Motallebzadeh H; Funnell WR
    Biomech Model Mechanobiol; 2013 Aug; 12(4):705-15. PubMed ID: 22965177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of dissipation in flexural wave turbulence: from experimental spectrum to Kolmogorov-Zakharov spectrum.
    Miquel B; Alexakis A; Mordant N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062925. PubMed ID: 25019869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Volumetric growth of soft tissues evaluated in the current configuration.
    Zhuan X; Luo XY
    Biomech Model Mechanobiol; 2022 Apr; 21(2):569-588. PubMed ID: 35044527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constitutive model for brain tissue under finite compression.
    Laksari K; Shafieian M; Darvish K
    J Biomech; 2012 Feb; 45(4):642-6. PubMed ID: 22281404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A robust anisotropic hyperelastic formulation for the modelling of soft tissue.
    Nolan DR; Gower AL; Destrade M; Ogden RW; McGarry JP
    J Mech Behav Biomed Mater; 2014 Nov; 39():48-60. PubMed ID: 25104546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cubical Mass-Spring Model design based on a tensile deformation test and nonlinear material model.
    San-Vicente G; Aguinaga I; Tomás Celigüeta J
    IEEE Trans Vis Comput Graph; 2012 Feb; 18(2):228-41. PubMed ID: 22156291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A visco-hyperelastic-damage constitutive model for the analysis of the biomechanical response of the periodontal ligament.
    Natali AN; Carniel EL; Pavan PG; Sander FG; Dorow C; Geiger M
    J Biomech Eng; 2008 Jun; 130(3):031004. PubMed ID: 18532853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A variational constitutive model for soft biological tissues.
    El Sayed T; Mota A; Fraternali F; Ortiz M
    J Biomech; 2008; 41(7):1458-66. PubMed ID: 18423649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model for passive elastic properties of rat vena cava.
    Desch GW; Weizsäcker HW
    J Biomech; 2007; 40(14):3130-45. PubMed ID: 17512529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.