These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 18764555)

  • 1. Breakdown of Fourier's law in nanotube thermal conductors.
    Chang CW; Okawa D; Garcia H; Majumdar A; Zettl A
    Phys Rev Lett; 2008 Aug; 101(7):075903. PubMed ID: 18764555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fourier's law: insight from a simple derivation.
    Dubi Y; Di Ventra M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):042101. PubMed ID: 19518279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum transport efficiency and Fourier's law.
    Manzano D; Tiersch M; Asadian A; Briegel HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061118. PubMed ID: 23367904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of thermal conductivity of amorphous carbon nanotube using molecular dynamics simulations.
    Ghosh MM
    J Nanosci Nanotechnol; 2013 Apr; 13(4):2961-6. PubMed ID: 23763186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale Graphene Disk: A Natural Functionally Graded Material-How is Fourier's Law Violated along Radius Direction of 2D Disk.
    Yang N; Hu S; Ma D; Lu T; Li B
    Sci Rep; 2015 Oct; 5():14878. PubMed ID: 26443206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simple one-dimensional model of heat conduction which obeys Fourier's law.
    Garrido PL; Hurtado PI; Nadrowski B
    Phys Rev Lett; 2001 Jun; 86(24):5486-9. PubMed ID: 11415282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanotube phonon waveguide.
    Chang CW; Okawa D; Garcia H; Majumdar A; Zettl A
    Phys Rev Lett; 2007 Jul; 99(4):045901. PubMed ID: 17678375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of interface, height and density of long vertically aligned carbon nanotube arrays on their thermal conductivity: an experimental study.
    Abot JL; Raghavan V; Li G; Thomas EL
    J Nanosci Nanotechnol; 2011 Jan; 11(1):115-24. PubMed ID: 21446414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isotope effect on the thermal conductivity of boron nitride nanotubes.
    Chang CW; Fennimore AM; Afanasiev A; Okawa D; Ikuno T; Garcia H; Li D; Majumdar A; Zettl A
    Phys Rev Lett; 2006 Aug; 97(8):085901. PubMed ID: 17026316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ballistic phonon transport in holey silicon.
    Lee J; Lim J; Yang P
    Nano Lett; 2015 May; 15(5):3273-9. PubMed ID: 25861026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emergence of Fourier's Law of Heat Transport in Quantum Electron Systems.
    Inui S; Stafford CA; Bergfield JP
    ACS Nano; 2018 May; 12(5):4304-4311. PubMed ID: 29648783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phonon transport in isotope-disordered carbon and boron-nitride nanotubes: is localization observable?
    Savić I; Mingo N; Stewart DA
    Phys Rev Lett; 2008 Oct; 101(16):165502. PubMed ID: 18999684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Divergent and Ultrahigh Thermal Conductivity in Millimeter-Long Nanotubes.
    Lee V; Wu CH; Lou ZX; Lee WL; Chang CW
    Phys Rev Lett; 2017 Mar; 118(13):135901. PubMed ID: 28409955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature gradient and Fourier's law in gradient-mass harmonic systems.
    Reich KV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052109. PubMed ID: 23767489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the probability of violations of Fourier's law for heat flow in small systems observed for short times.
    Evans DJ; Searles DJ; Williams SR
    J Chem Phys; 2010 Jan; 132(2):024501. PubMed ID: 20095681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fourier's law from a chain of coupled anharmonic oscillators under energy-conserving noise.
    Landi GT; de Oliveira MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052126. PubMed ID: 23767506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrodynamic phonon transport in suspended graphene.
    Lee S; Broido D; Esfarjani K; Chen G
    Nat Commun; 2015 Feb; 6():6290. PubMed ID: 25693180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heat conduction in a three dimensional anharmonic crystal.
    Saito K; Dhar A
    Phys Rev Lett; 2010 Jan; 104(4):040601. PubMed ID: 20366695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new regime of nanoscale thermal transport: Collective diffusion increases dissipation efficiency.
    Hoogeboom-Pot KM; Hernandez-Charpak JN; Gu X; Frazer TD; Anderson EH; Chao W; Falcone RW; Yang R; Murnane MM; Kapteyn HC; Nardi D
    Proc Natl Acad Sci U S A; 2015 Apr; 112(16):4846-51. PubMed ID: 25831491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal conductivity of graphene and graphite: collective excitations and mean free paths.
    Fugallo G; Cepellotti A; Paulatto L; Lazzeri M; Marzari N; Mauri F
    Nano Lett; 2014 Nov; 14(11):6109-14. PubMed ID: 25343716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.