These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 18764562)

  • 1. Suppression of electron spin relaxation in Mn-doped GaAs.
    Astakhov GV; Dzhioev RI; Kavokin KV; Korenev VL; Lazarev MV; Tkachuk MN; Kusrayev YG; Kiessling T; Ossau W; Molenkamp LW
    Phys Rev Lett; 2008 Aug; 101(7):076602. PubMed ID: 18764562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term hole spin memory in the resonantly amplified spin coherence of InGaAs/GaAs quantum well electrons.
    Yugova IA; Sokolova AA; Yakovlev DR; Greilich A; Reuter D; Wieck AD; Bayer M
    Phys Rev Lett; 2009 Apr; 102(16):167402. PubMed ID: 19518753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manipulation of the spin memory of electrons in n-GaAs.
    Dzhioev RI; Korenev VL; Merkulov IA; Zakharchenya BP; Gammon D; Efros AL; Katzer DS
    Phys Rev Lett; 2002 Jun; 88(25 Pt 1):256801. PubMed ID: 12097110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Charge-State Control of Mn(2+) Spin Relaxation Dynamics in Colloidal n-Type Zn1-xMnxO Nanocrystals.
    Schimpf AM; Rinehart JD; Ochsenbein ST; Gamelin DR
    J Phys Chem Lett; 2015 May; 6(9):1748-53. PubMed ID: 26263344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optically induced coupling of two magnetic dopant spins by a photoexcited hole in a Mn-doped InAs/GaAs quantum dot.
    Krebs O; Lemaître A
    Phys Rev Lett; 2013 Nov; 111(18):187401. PubMed ID: 24237560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppression of Dyakonov-Perel spin relaxation in high-mobility n-GaAs.
    Dzhioev RI; Kavokin KV; Korenev VL; Lazarev MV; Poletaev NK; Zakharchenya BP; Stinaff EA; Gammon D; Bracker AS; Ware ME
    Phys Rev Lett; 2004 Nov; 93(21):216402. PubMed ID: 15601037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optically controlled spin-polarization memory effect on Mn delta-doped heterostructures.
    Balanta MA; Brasil MJ; Iikawa F; Mendes UC; Brum JA; Danilov YA; Dorokhin MV; Vikhrova OV; Zvonkov BN
    Sci Rep; 2016 Apr; 6():24537. PubMed ID: 27080310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrical suppression of spin relaxation in GaAs(111)B quantum wells.
    Hernández-Mínguez A; Biermann K; Hey R; Santos PV
    Phys Rev Lett; 2012 Dec; 109(26):266602. PubMed ID: 23368596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exchange-Driven Spin Relaxation in Ferromagnet-Oxide-Semiconductor Heterostructures.
    Ou YS; Chiu YH; Harmon NJ; Odenthal P; Sheffield M; Chilcote M; Kawakami RK; Flatté ME; Johnston-Halperin E
    Phys Rev Lett; 2016 Mar; 116(10):107201. PubMed ID: 27015506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atom-by-atom substitution of Mn in GaAs and visualization of their hole-mediated interactions.
    Kitchen D; Richardella A; Tang JM; Flatté ME; Yazdani A
    Nature; 2006 Jul; 442(7101):436-9. PubMed ID: 16871214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrically driven spin dynamics of paramagnetic impurities.
    Saha D; Siddiqui L; Bhattacharya P; Datta S; Basu D; Holub M
    Phys Rev Lett; 2008 May; 100(19):196603. PubMed ID: 18518470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subsecond spin relaxation times in quantum dots at zero applied magnetic field due to a strong electron-nuclear interaction.
    Oulton R; Greilich A; Verbin SY; Cherbunin RV; Auer T; Yakovlev DR; Bayer M; Merkulov IA; Stavarache V; Reuter D; Wieck AD
    Phys Rev Lett; 2007 Mar; 98(10):107401. PubMed ID: 17358564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct observation of the electron spin relaxation induced by nuclei in quantum dots.
    Braun PF; Marie X; Lombez L; Urbaszek B; Amand T; Renucci P; Kalevich VK; Kavokin KV; Krebs O; Voisin P; Masumoto Y
    Phys Rev Lett; 2005 Mar; 94(11):116601. PubMed ID: 15903877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear magnetic resonance study of the electron-doped high-temperature superconducting cuprates.
    Williams GV; Krämer S; Jung CU; Park MS; Lee SI
    Solid State Nucl Magn Reson; 2004; 26(3-4):236-45. PubMed ID: 15388188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical electron spin pumping in n-doped quantum wells.
    Ungier W; Buczko R
    J Phys Condens Matter; 2009 Jan; 21(4):045802. PubMed ID: 21715824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron Spin Relaxation of Hole and Electron Polarons in π-Conjugated Porphyrin Arrays: Spintronic Implications.
    Rawson J; Angiolillo PJ; Frail PR; Goodenough I; Therien MJ
    J Phys Chem B; 2015 Jun; 119(24):7681-9. PubMed ID: 25697578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of optical orientation of an individual Mn
    Smoleński T; Cywiński Ł; Kossacki P
    J Phys Condens Matter; 2018 Feb; 30(5):055303. PubMed ID: 29315081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gd3+ spin-lattice relaxation via multi-band conduction electrons in Y(1-x)Gd(x)In3: an electron spin resonance study.
    Cabrera-Baez M; Iwamoto W; Magnavita ET; Osorio-Guillén JM; Ribeiro RA; Avila MA; Rettori C
    J Phys Condens Matter; 2014 Apr; 26(17):175501. PubMed ID: 24713600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spin relaxation and decoherence of holes in quantum dots.
    Bulaev DV; Loss D
    Phys Rev Lett; 2005 Aug; 95(7):076805. PubMed ID: 16196813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical measurement and control of spin diffusion in n-doped GaAs quantum wells.
    Carter SG; Chen Z; Cundiff ST
    Phys Rev Lett; 2006 Sep; 97(13):136602. PubMed ID: 17026058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.