These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. A three-dimensional laser interferometer gravitational-wave detector. Liu M; Gong B Sci Rep; 2020 Oct; 10(1):16285. PubMed ID: 33004863 [TBL] [Abstract][Full Text] [Related]
47. Experimental demonstration of weak-light laser ranging and data communication for LISA. Esteban JJ; García AF; Barke S; Peinado AM; Cervantes FG; Bykov I; Heinzel G; Danzmann K Opt Express; 2011 Aug; 19(17):15937-46. PubMed ID: 21934957 [TBL] [Abstract][Full Text] [Related]
48. Quasi-static displacement calibration system for a "Violin-Mode" shadow-sensor intended for Gravitational Wave detector suspensions. Lockerbie NA; Tokmakov KV Rev Sci Instrum; 2014 Oct; 85(10):105003. PubMed ID: 25362445 [TBL] [Abstract][Full Text] [Related]
49. A low-noise transimpedance amplifier for the detection of "Violin-Mode" resonances in Advanced Laser Interferometer Gravitational wave Observatory suspensions. Lockerbie NA; Tokmakov KV Rev Sci Instrum; 2014 Nov; 85(11):114705. PubMed ID: 25430131 [TBL] [Abstract][Full Text] [Related]
50. Invited article: CO2 laser production of fused silica fibers for use in interferometric gravitational wave detector mirror suspensions. Heptonstall A; Barton MA; Bell A; Cagnoli G; Cantley CA; Crooks DR; Cumming A; Grant A; Hammond GD; Harry GM; Hough J; Jones R; Kelley D; Kumar R; Martin IW; Robertson NA; Rowan S; Strain KA; Tokmakov K; van Veggel M Rev Sci Instrum; 2011 Jan; 82(1):011301. PubMed ID: 21280809 [TBL] [Abstract][Full Text] [Related]
51. Experimental demonstration of a classical analog to quantum noise cancellation for use in gravitational wave detection. Mow-Lowry CM; Sheard BS; Gray MB; McClelland DE; Whitcomb SE Phys Rev Lett; 2004 Apr; 92(16):161102. PubMed ID: 15169214 [TBL] [Abstract][Full Text] [Related]
52. Detecting Gravitational-Wave Transients at 5σ: A Hierarchical Approach. Thrane E; Coughlin M Phys Rev Lett; 2015 Oct; 115(18):181102. PubMed ID: 26565452 [TBL] [Abstract][Full Text] [Related]
56. Demonstration of displacement- and frequency-noise-free laser interferometry using bidirectional Mach-Zehnder interferometers. Sato S; Kokeyama K; Ward RL; Kawamura S; Chen Y; Pai A; Somiya K Phys Rev Lett; 2007 Apr; 98(14):141101. PubMed ID: 17501262 [TBL] [Abstract][Full Text] [Related]
57. Room-temperature tests of an optical transducer for resonant gravitational wave detectors. Pang Y; Richard JP Appl Opt; 1995 Aug; 34(22):4982-8. PubMed ID: 21052342 [TBL] [Abstract][Full Text] [Related]
58. Methodological demonstration of laser beam pointing control for space gravitational wave detection missions. Dong YH; Liu HS; Luo ZR; Li YQ; Jin G Rev Sci Instrum; 2014 Jul; 85(7):074501. PubMed ID: 25085155 [TBL] [Abstract][Full Text] [Related]
59. Fringe-counting technique used to lock a suspended interferometer. Barone F; Calloni E; Rosa RD; Fiore LD; Fusco F; Milano L; Russo G Appl Opt; 1994 Mar; 33(7):1194-7. PubMed ID: 20862137 [TBL] [Abstract][Full Text] [Related]
60. New method for gravitational wave detection with atomic sensors. Graham PW; Hogan JM; Kasevich MA; Rajendran S Phys Rev Lett; 2013 Apr; 110(17):171102. PubMed ID: 23679702 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]