These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 18765592)

  • 1. Concentrations of ganglioside type M1 and immunoglobulin G in colostrum are inversely related to bacterial infection at early lactation in cows.
    Leitner G; Krifucks O; Jacoby S; Lavi Y; Silanikove N
    J Dairy Sci; 2008 Sep; 91(9):3337-42. PubMed ID: 18765592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Colostral immunoglobulin concentrations in Holstein and Guernsey cows.
    Tyler JW; Steevens BJ; Hostetler DE; Holle JM; Denbigh JL
    Am J Vet Res; 1999 Sep; 60(9):1136-9. PubMed ID: 10490085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of mammary gland and colostral characteristics for prediction of colostral IgG1 concentration and intramammary infection in Holstein cows.
    Maunsell FP; Morin DE; Constable PD; Hurley WL; McCoy GC
    J Am Vet Med Assoc; 1999 Jun; 214(12):1817-23. PubMed ID: 10382025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of anti-Fasciola IgG antibodies in serum and milk from dairy cows during lactation, and in serum from calves after feeding colostrum from infected dams.
    Mezo M; González-Warleta M; Castro-Hermida JA; Carro C; Ubeira FM
    Vet Parasitol; 2010 Feb; 168(1-2):36-44. PubMed ID: 19897308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Risk factors associated with colostrum quality in Norwegian dairy cows.
    Gulliksen SM; Lie KI; Sølverød L; Østerås O
    J Dairy Sci; 2008 Feb; 91(2):704-12. PubMed ID: 18218758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Management and production factors influencing immunoglobulin G1 concentration in colostrum from Holstein cows.
    Pritchett LC; Gay CC; Besser TE; Hancock DD
    J Dairy Sci; 1991 Jul; 74(7):2336-41. PubMed ID: 1894821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of somatic cell counts and intramammary infections across the dry period.
    Pantoja JC; Hulland C; Ruegg PL
    Prev Vet Med; 2009 Jul; 90(1-2):43-54. PubMed ID: 19409630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of a cephalonium containing dry cow therapy and an internal teat sealant, both alone and in combination.
    Bradley AJ; Breen JE; Payne B; Williams P; Green MJ
    J Dairy Sci; 2010 Apr; 93(4):1566-77. PubMed ID: 20338434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Somatic cell count status across the dry period as a risk factor for the development of clinical mastitis in the subsequent lactation.
    Pantoja JC; Hulland C; Ruegg PL
    J Dairy Sci; 2009 Jan; 92(1):139-48. PubMed ID: 19109272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frequency of isolation of environmental mastitis-causing pathogens and incidence of new intramammary infection during the nonlactating period.
    Oliver SP
    Am J Vet Res; 1988 Nov; 49(11):1789-93. PubMed ID: 3073674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of prepartum intramammary treatment with pirlimycin hydrochloride on prevalence of early first-lactation mastitis in dairy heifers.
    Middleton JR; Timms LL; Bader GR; Lakritz J; Luby CD; Steevens BJ
    J Am Vet Med Assoc; 2005 Dec; 227(12):1969-74. PubMed ID: 16379636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heifer and quarter characteristics associated with periparturient blood and milk neutrophil apoptosis in healthy heifers and in heifers with subclinical mastitis.
    Piepers S; Opsomer G; Meyer E; Demeyere K; Barkema HW; de Kruif A; De Vliegher S
    J Dairy Sci; 2009 Sep; 92(9):4330-9. PubMed ID: 19700692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of intramuscular and intramammary vaccination of cows on antibody levels and resistance to intramammary infection by Staphylococcus aureus.
    Brock JH; Steel ED; Reiter B
    Res Vet Sci; 1975 Sep; 19(2):152-8. PubMed ID: 1166119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Association of milk yield and infection status at dry-off with intramammary infections at subsequent calving.
    Newman KA; Rajala-Schultz PJ; Degraves FJ; Lakritz J
    J Dairy Res; 2010 Feb; 77(1):99-106. PubMed ID: 19906321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of dry cow treatment of beef cows on pathogenic organisms, milk somatic cell counts, and calf growth during the subsequent lactation.
    Lents CA; Wettemann RP; Paape MJ; Looper ML; Buchanan DS
    J Anim Sci; 2008 Mar; 86(3):748-55. PubMed ID: 18073291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-random distribution of udder infections among cows. Evaluation of some contributing factors.
    Rainard P; Poutrel B
    Ann Rech Vet; 1984; 15(1):119-27. PubMed ID: 6541444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prevalence of intramammary infection in Dutch dairy herds.
    Sampimon O; Barkema HW; Berends I; Sol J; Lam T
    J Dairy Res; 2009 May; 76(2):129-36. PubMed ID: 19121233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of prepartum dry cow antibiotic treatment in dairy heifers on udder health and milk production.
    Sampimon OC; De Vliegher S; Barkema HW; Sol J; Lam TJ
    J Dairy Sci; 2009 Sep; 92(9):4395-403. PubMed ID: 19700699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systemic and local immune responses associated with bovine mammary infections due to Mycoplasma bovis: resistance and susceptibility in previously infected cows.
    Bennett RH; Jasper DE
    Am J Vet Res; 1978 Mar; 39(3):417-23. PubMed ID: 637389
    [No Abstract]   [Full Text] [Related]  

  • 20. Specific IgG activity against diarrheagenic bacteria in bovine immune milk and effect of pH on its antigen-binding activity upon heating.
    Gao W; Chen L; Xu LB; Huang XH
    J Dairy Res; 2010 May; 77(2):220-4. PubMed ID: 20196896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.