BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 18765901)

  • 1. Structure of the catalytic domain of Streptococcus pneumoniae sialidase NanA.
    Xu G; Li X; Andrew PW; Taylor GL
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2008 Sep; 64(Pt 9):772-5. PubMed ID: 18765901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of the NanB sialidase from Streptococcus pneumoniae.
    Xu G; Potter JA; Russell RJ; Oggioni MR; Andrew PW; Taylor GL
    J Mol Biol; 2008 Dec; 384(2):436-49. PubMed ID: 18835278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative studies of catalytic pathways for Streptococcus pneumoniae sialidases NanA, NanB and NanC.
    Xiao K; Wang X; Yu H
    Sci Rep; 2019 Feb; 9(1):2157. PubMed ID: 30770840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Streptococcus pneumoniae NanC: STRUCTURAL INSIGHTS INTO THE SPECIFICITY AND MECHANISM OF A SIALIDASE THAT PRODUCES A SIALIDASE INHIBITOR.
    Owen CD; Lukacik P; Potter JA; Sleator O; Taylor GL; Walsh MA
    J Biol Chem; 2015 Nov; 290(46):27736-48. PubMed ID: 26370075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and functional studies of Streptococcus pneumoniae neuraminidase B: An intramolecular trans-sialidase.
    Gut H; King SJ; Walsh MA
    FEBS Lett; 2008 Oct; 582(23-24):3348-52. PubMed ID: 18775704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three Streptococcus pneumoniae sialidases: three different products.
    Xu G; Kiefel MJ; Wilson JC; Andrew PW; Oggioni MR; Taylor GL
    J Am Chem Soc; 2011 Feb; 133(6):1718-21. PubMed ID: 21244006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural characterization of the carbohydrate-binding module of NanA sialidase, a pneumococcal virulence factor.
    Yang L; Connaris H; Potter JA; Taylor GL
    BMC Struct Biol; 2015 Aug; 15():15. PubMed ID: 26289431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuraminidase A from Streptococcus pneumoniae has a modular organization of catalytic and lectin domains separated by a flexible linker.
    Sharapova Y; Suplatov D; Švedas V
    FEBS J; 2018 Jul; 285(13):2428-2445. PubMed ID: 29704878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and structural characterisation of selective non-carbohydrate-based inhibitors of bacterial sialidases.
    Brear P; Telford J; Taylor GL; Westwood NJ
    Chembiochem; 2012 Nov; 13(16):2374-83. PubMed ID: 23070966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sialidase inhibitory activity of diarylnonanoid and neolignan compounds extracted from the seeds of Myristica fragrans.
    Park JY; Hwan Lim S; Ram Kim B; Jae Jeong H; Kwon HJ; Song GY; Bae Ryu Y; Song Lee W
    Bioorg Med Chem Lett; 2017 Jul; 27(14):3060-3064. PubMed ID: 28551100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The high resolution structures of free and inhibitor-bound Trypanosoma rangeli sialidase and its comparison with T. cruzi trans-sialidase.
    Amaya MF; Buschiazzo A; Nguyen T; Alzari PM
    J Mol Biol; 2003 Jan; 325(4):773-84. PubMed ID: 12507479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of a direct spectrophotometric method to investigate the kinetics and inhibition of sialidases.
    Hayre JK; Xu G; Borgianni L; Taylor GL; Andrew PW; Docquier JD; Oggioni MR
    BMC Biochem; 2012 Oct; 13():19. PubMed ID: 23031230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Streptococcus pneumoniae Sialidase SpNanB-Catalyzed One-Pot Multienzyme (OPME) Synthesis of 2,7-Anhydro-Sialic Acids as Selective Sialidase Inhibitors.
    Xiao A; Slack TJ; Li Y; Shi D; Yu H; Li W; Liu Y; Chen X
    J Org Chem; 2018 Sep; 83(18):10798-10804. PubMed ID: 30105908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of the human cytosolic sialidase Neu2. Evidence for the dynamic nature of substrate recognition.
    Chavas LM; Tringali C; Fusi P; Venerando B; Tettamanti G; Kato R; Monti E; Wakatsuki S
    J Biol Chem; 2005 Jan; 280(1):469-75. PubMed ID: 15501818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The crystal structure of an intramolecular trans-sialidase with a NeuAc alpha2-->3Gal specificity.
    Luo Y; Li SC; Chou MY; Li YT; Luo M
    Structure; 1998 Apr; 6(4):521-30. PubMed ID: 9562562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic and lectin domains in neuraminidase A from Streptococcus pneumoniae are capable of an intermolecular assembly: Implications for biofilm formation.
    Sharapova Y; Švedas V; Suplatov D
    FEBS J; 2021 May; 288(10):3217-3230. PubMed ID: 33108702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic mechanism of type C sialidase from Streptococcus pneumoniae: from covalent intermediate to final product.
    Xiong J; Zhang C; Xu D
    J Mol Model; 2018 Sep; 24(10):297. PubMed ID: 30259133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and biochemical characterization of the broad substrate specificity of Bacteroides thetaiotaomicron commensal sialidase.
    Park KH; Kim MG; Ahn HJ; Lee DH; Kim JH; Kim YW; Woo EJ
    Biochim Biophys Acta; 2013 Aug; 1834(8):1510-9. PubMed ID: 23665536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of influenza virus neuraminidase B/Lee/40 complexed with sialic acid and a dehydro analog at 1.8-A resolution: implications for the catalytic mechanism.
    Janakiraman MN; White CL; Laver WG; Air GM; Luo M
    Biochemistry; 1994 Jul; 33(27):8172-9. PubMed ID: 8031750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and characterization of a novel, versatile sialidase from a Sphingobacterium that can hydrolyze the glycosides of any sialic acid species at neutral pH.
    Iwaki Y; Matsunaga E; Takegawa K; Sato C; Kitajima K
    Biochem Biophys Res Commun; 2020 Mar; 523(2):487-492. PubMed ID: 31889533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.