These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 18765910)
1. Crystallization and preliminary X-ray diffraction analysis of the peptidylprolyl isomerase Par27 of Bordetella pertussis. Wohlkönig A; Hodak H; Clantin B; Sénéchal M; Bompard C; Jacob-Dubuisson F; Villeret V Acta Crystallogr Sect F Struct Biol Cryst Commun; 2008 Sep; 64(Pt 9):809-12. PubMed ID: 18765910 [TBL] [Abstract][Full Text] [Related]
2. The peptidyl-prolyl isomerase and chaperone Par27 of Bordetella pertussis as the prototype for a new group of parvulins. Hodak H; Wohlkönig A; Smet-Nocca C; Drobecq H; Wieruszeski JM; Sénéchal M; Landrieu I; Locht C; Jamin M; Jacob-Dubuisson F J Mol Biol; 2008 Feb; 376(2):414-26. PubMed ID: 18164725 [TBL] [Abstract][Full Text] [Related]
3. Structure and plasticity of the peptidyl-prolyl isomerase Par27 of Bordetella pertussis revealed by X-ray diffraction and small-angle X-ray scattering. Clantin B; Leyrat C; Wohlkönig A; Hodak H; Ribeiro Ede A; Martinez N; Baud C; Smet-Nocca C; Villeret V; Jacob-Dubuisson F; Jamin M J Struct Biol; 2010 Mar; 169(3):253-65. PubMed ID: 19932182 [TBL] [Abstract][Full Text] [Related]
4. The virulence factor PEB4 (Cj0596) and the periplasmic protein Cj1289 are two structurally related SurA-like chaperones in the human pathogen Campylobacter jejuni. Kale A; Phansopa C; Suwannachart C; Craven CJ; Rafferty JB; Kelly DJ J Biol Chem; 2011 Jun; 286(24):21254-65. PubMed ID: 21524997 [TBL] [Abstract][Full Text] [Related]
5. Generation of a highly active folding enzyme by combining a parvulin-type prolyl isomerase from SurA with an unrelated chaperone domain. Geitner AJ; Varga E; Wehmer M; Schmid FX J Mol Biol; 2013 Nov; 425(22):4089-98. PubMed ID: 23871892 [TBL] [Abstract][Full Text] [Related]
6. The SurA periplasmic PPIase lacking its parvulin domains functions in vivo and has chaperone activity. Behrens S; Maier R; de Cock H; Schmid FX; Gross CA EMBO J; 2001 Jan; 20(1-2):285-94. PubMed ID: 11226178 [TBL] [Abstract][Full Text] [Related]
7. The prolyl isomerase domain of PpiD from Escherichia coli shows a parvulin fold but is devoid of catalytic activity. Weininger U; Jakob RP; Kovermann M; Balbach J; Schmid FX Protein Sci; 2010 Jan; 19(1):6-18. PubMed ID: 19866485 [TBL] [Abstract][Full Text] [Related]
8. The Activity of Escherichia coli Chaperone SurA Is Regulated by Conformational Changes Involving a Parvulin Domain. Soltes GR; Schwalm J; Ricci DP; Silhavy TJ J Bacteriol; 2016 Jan; 198(6):921-9. PubMed ID: 26728192 [TBL] [Abstract][Full Text] [Related]
9. The periplasmic bacterial molecular chaperone SurA adapts its structure to bind peptides in different conformations to assert a sequence preference for aromatic residues. Xu X; Wang S; Hu YX; McKay DB J Mol Biol; 2007 Oct; 373(2):367-81. PubMed ID: 17825319 [TBL] [Abstract][Full Text] [Related]
10. Expression, purification, crystallization and preliminary X-ray analysis of cyclophilin A from the bovine parasite Trypanosoma brucei brucei. Dao-Thi MH; Transue TR; Pellé R; Murphy NB; Poortmans F; Steyaert J Acta Crystallogr D Biol Crystallogr; 1998 Sep; 54(Pt 5):1046-8. PubMed ID: 9757134 [TBL] [Abstract][Full Text] [Related]
11. Jia M; Hu Y; Jin C Biomol NMR Assign; 2019 Apr; 13(1):183-186. PubMed ID: 30684235 [TBL] [Abstract][Full Text] [Related]
12. Solution structure of the parvulin-type PPIase domain of Staphylococcus aureus PrsA--implications for the catalytic mechanism of parvulins. Heikkinen O; Seppala R; Tossavainen H; Heikkinen S; Koskela H; Permi P; Kilpeläinen I BMC Struct Biol; 2009 Mar; 9():17. PubMed ID: 19309529 [TBL] [Abstract][Full Text] [Related]
13. Crystallographic structure of SurA, a molecular chaperone that facilitates folding of outer membrane porins. Bitto E; McKay DB Structure; 2002 Nov; 10(11):1489-98. PubMed ID: 12429090 [TBL] [Abstract][Full Text] [Related]
14. The periplasmic peptidyl prolyl cis-trans isomerases PpiD and SurA have partially overlapping substrate specificities. Stymest KH; Klappa P FEBS J; 2008 Jul; 275(13):3470-9. PubMed ID: 18498364 [TBL] [Abstract][Full Text] [Related]
15. Periplasmic chaperones--new structural and functional insights. Behrens S Structure; 2002 Nov; 10(11):1469-71. PubMed ID: 12429086 [TBL] [Abstract][Full Text] [Related]
16. Structural and functional studies of FkpA from Escherichia coli, a cis/trans peptidyl-prolyl isomerase with chaperone activity. Saul FA; Arié JP; Vulliez-le Normand B; Kahn R; Betton JM; Bentley GA J Mol Biol; 2004 Jan; 335(2):595-608. PubMed ID: 14672666 [TBL] [Abstract][Full Text] [Related]
17. Interaction of the periplasmic peptidylprolyl cis-trans isomerase SurA with model peptides. The N-terminal region of SurA id essential and sufficient for peptide binding. Webb HM; Ruddock LW; Marchant RJ; Jonas K; Klappa P J Biol Chem; 2001 Dec; 276(49):45622-7. PubMed ID: 11546789 [TBL] [Abstract][Full Text] [Related]
18. The Periplasmic Chaperones Skp and SurA. Mas G; Thoma J; Hiller S Subcell Biochem; 2019; 92():169-186. PubMed ID: 31214987 [TBL] [Abstract][Full Text] [Related]
19. Preliminary analysis of multiple crystal forms of the bovine cyclophilin-cyclosporin A complex. Itoh S; Fitzgibbon MJ; Black JR; Navia MA J Mol Biol; 1994 Jan; 235(3):1136-40. PubMed ID: 8289312 [TBL] [Abstract][Full Text] [Related]
20. The Role of SurA PPIase Domains in Preventing Aggregation of the Outer-Membrane Proteins tOmpA and OmpT. Humes JR; Schiffrin B; Calabrese AN; Higgins AJ; Westhead DR; Brockwell DJ; Radford SE J Mol Biol; 2019 Mar; 431(6):1267-1283. PubMed ID: 30716334 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]