These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
404 related articles for article (PubMed ID: 18766338)
1. Optimization of the production of rhamnolipids by Pseudomonas aeruginosa UFPEDA 614 in solid-state culture. Camilios Neto D; Meira JA; de Araújo JM; Mitchell DA; Krieger N Appl Microbiol Biotechnol; 2008 Dec; 81(3):441-8. PubMed ID: 18766338 [TBL] [Abstract][Full Text] [Related]
2. Production of rhamnolipids in solid-state cultivation: Characterization, downstream processing and application in the cleaning of contaminated soils. Camilios Neto D; Meira JA; Tiburtius E; Zamora PP; Bugay C; Mitchell DA; Krieger N Biotechnol J; 2009 May; 4(5):748-55. PubMed ID: 19452471 [TBL] [Abstract][Full Text] [Related]
3. Production of rhamnolipids in solid-state cultivation using a mixture of sugarcane bagasse and corn bran supplemented with glycerol and soybean oil. Camilios-Neto D; Bugay C; de Santana-Filho AP; Joslin T; de Souza LM; Sassaki GL; Mitchell DA; Krieger N Appl Microbiol Biotechnol; 2011 Mar; 89(5):1395-403. PubMed ID: 21080163 [TBL] [Abstract][Full Text] [Related]
4. Oil wastes as unconventional substrates for rhamnolipid biosurfactant production by Pseudomonas aeruginosa LBI. Nitschke M; Costa SG; Haddad R; Gonçalves LA; Eberlin MN; Contiero J Biotechnol Prog; 2005; 21(5):1562-6. PubMed ID: 16209563 [TBL] [Abstract][Full Text] [Related]
5. Pseudomonas aeruginosa PAO1 as a model for rhamnolipid production in bioreactor systems. Müller MM; Hörmann B; Syldatk C; Hausmann R Appl Microbiol Biotechnol; 2010 Jun; 87(1):167-74. PubMed ID: 20217074 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of critical nutritional parameters and their significance in the production of rhamnolipid biosurfactants from Pseudomonas aeruginosa BS-161R. Kumar CG; Mamidyala SK; Sujitha P; Muluka H; Akkenapally S Biotechnol Prog; 2012; 28(6):1507-16. PubMed ID: 22961871 [TBL] [Abstract][Full Text] [Related]
7. Purification and concentration of a rhamnolipid biosurfactant produced by Pseudomonas aeruginosa SP4 using foam fractionation. Sarachat T; Pornsunthorntawee O; Chavadej S; Rujiravanit R Bioresour Technol; 2010 Jan; 101(1):324-30. PubMed ID: 19716289 [TBL] [Abstract][Full Text] [Related]
8. Improved production of biosurfactant with newly isolated Pseudomonas aeruginosa S2. Chen SY; Lu WB; Wei YH; Chen WM; Chang JS Biotechnol Prog; 2007; 23(3):661-6. PubMed ID: 17461551 [TBL] [Abstract][Full Text] [Related]
9. Continuous rhamnolipid production using denitrifying Pseudomonas aeruginosa cells in hollow-fiber bioreactor. Pinzon NM; Cook AG; Ju LK Biotechnol Prog; 2013; 29(2):352-8. PubMed ID: 23359613 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of the structural composition and surface properties of rhamnolipid mixtures produced by Pseudomonas aeruginosa UFPEDA 614 in different cultivation periods. de Santana-Filho AP; Camilios-Neto D; de Souza LM; Sassaki GL; Mitchell DA; Krieger N Appl Biochem Biotechnol; 2015 Jan; 175(2):988-95. PubMed ID: 25351631 [TBL] [Abstract][Full Text] [Related]
11. Enhancement of rhamnoplipid production in residual soybean oil by an isolated strain of Pseudomonas aeruginosa. de Lima CJ; França FP; Sérvulo EF; Resende MM; Cardoso VL Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):463-70. PubMed ID: 18478409 [TBL] [Abstract][Full Text] [Related]
12. Stimulating in-soil rhamnolipid production in a bioslurry reactor by limiting nitrogen. Hudak AJ; Cassidy DP Biotechnol Bioeng; 2004 Dec; 88(7):861-8. PubMed ID: 15538720 [TBL] [Abstract][Full Text] [Related]
13. Oxygen-controlled biosurfactant production in a bench scale bioreactor. Kronemberger Fde A; Santa Anna LM; Fernandes AC; Menezes RR; Borges CP; Freire DM Appl Biochem Biotechnol; 2008 Mar; 147(1-3):33-45. PubMed ID: 18401751 [TBL] [Abstract][Full Text] [Related]
14. Production kinetics and tensioactive characteristics of biosurfactant from a Pseudomonas aeruginosa mutant grown on waste frying oils. Raza ZA; Khan MS; Khalid ZM; Rehman A Biotechnol Lett; 2006 Oct; 28(20):1623-31. PubMed ID: 16955358 [TBL] [Abstract][Full Text] [Related]
15. Glycerol as substrate for the production of biosurfactant by Pseudomonas aeruginosa UCP0992. Silva SN; Farias CB; Rufino RD; Luna JM; Sarubbo LA Colloids Surf B Biointerfaces; 2010 Aug; 79(1):174-83. PubMed ID: 20417068 [TBL] [Abstract][Full Text] [Related]
16. Production of rhamnolipid biosurfactants by Pseudomonas aeruginosa DS10-129 in a microfluidic bioreactor. Rahman PK; Pasirayi G; Auger V; Ali Z Biotechnol Appl Biochem; 2010 Feb; 55(1):45-52. PubMed ID: 19958287 [TBL] [Abstract][Full Text] [Related]
17. Microbial Surfactants: Alternative to Vegetable Oil Surfactants. Gudiña EJ; Rodrigues LR Methods Mol Biol; 2019; 1995():383-393. PubMed ID: 31148140 [TBL] [Abstract][Full Text] [Related]
18. Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using low-cost raw materials. Rahman KS; Rahman TJ; McClean S; Marchant R; Banat IM Biotechnol Prog; 2002; 18(6):1277-81. PubMed ID: 12467462 [TBL] [Abstract][Full Text] [Related]
19. Production of biosurfactant from a new and promising strain of Pseudomonas aeruginosa PA1. Santa Anna LM; Sebastian GV; Pereira N; Alves TL; Menezes EP; Freire DM Appl Biochem Biotechnol; 2001; 91-93():459-67. PubMed ID: 11963874 [TBL] [Abstract][Full Text] [Related]
20. Rhamnolipid production by pseudomonas aeruginosa GIM 32 using different substrates including molasses distillery wastewater. Li AH; Xu MY; Sun W; Sun GP Appl Biochem Biotechnol; 2011 Mar; 163(5):600-11. PubMed ID: 20830582 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]