BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 18767061)

  • 1. Osteoblast activity on collagen-GAG scaffolds is affected by collagen and GAG concentrations.
    Tierney CM; Jaasma MJ; O'Brien FJ
    J Biomed Mater Res A; 2009 Oct; 91(1):92-101. PubMed ID: 18767061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering.
    Murphy CM; Haugh MG; O'Brien FJ
    Biomaterials; 2010 Jan; 31(3):461-6. PubMed ID: 19819008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of pore size on cell adhesion in collagen-GAG scaffolds.
    O'Brien FJ; Harley BA; Yannas IV; Gibson LJ
    Biomaterials; 2005 Feb; 26(4):433-41. PubMed ID: 15275817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of collagen concentration and crosslink density on the biological, structural and mechanical properties of collagen-GAG scaffolds for bone tissue engineering.
    Tierney CM; Haugh MG; Liedl J; Mulcahy F; Hayes B; O'Brien FJ
    J Mech Behav Biomed Mater; 2009 Apr; 2(2):202-9. PubMed ID: 19627824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An in vitro assessment of a cell-containing collagenous extracellular matrix-like scaffold for bone tissue engineering.
    Pedraza CE; Marelli B; Chicatun F; McKee MD; Nazhat SN
    Tissue Eng Part A; 2010 Mar; 16(3):781-93. PubMed ID: 19778181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate stiffness and contractile behaviour modulate the functional maturation of osteoblasts on a collagen-GAG scaffold.
    Keogh MB; O'Brien FJ; Daly JS
    Acta Biomater; 2010 Nov; 6(11):4305-13. PubMed ID: 20570642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crosslinking and mechanical properties significantly influence cell attachment, proliferation, and migration within collagen glycosaminoglycan scaffolds.
    Haugh MG; Murphy CM; McKiernan RC; Altenbuchner C; O'Brien FJ
    Tissue Eng Part A; 2011 May; 17(9-10):1201-8. PubMed ID: 21155630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [A study on nano-hydroxyapatite-chitosan scaffold for bone tissue engineering].
    Wang X; Liu L; Zhang Q
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb; 21(2):120-4. PubMed ID: 17357456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of pore size on permeability and cell attachment in collagen scaffolds for tissue engineering.
    O'Brien FJ; Harley BA; Waller MA; Yannas IV; Gibson LJ; Prendergast PJ
    Technol Health Care; 2007; 15(1):3-17. PubMed ID: 17264409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel collagen scaffold supports human osteogenesis--applications for bone tissue engineering.
    Keogh MB; O' Brien FJ; Daly JS
    Cell Tissue Res; 2010 Apr; 340(1):169-77. PubMed ID: 20198386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of collagen-glycosaminoglycan blended nanofibrous scaffolds and their biological properties.
    Zhong S; Teo WE; Zhu X; Beuerman R; Ramakrishna S; Yung LY
    Biomacromolecules; 2005; 6(6):2998-3004. PubMed ID: 16283719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel apatite fiber scaffolds can promote three-dimensional proliferation of osteoblasts in rodent bone regeneration models.
    Morisue H; Matsumoto M; Chiba K; Matsumoto H; Toyama Y; Aizawa M; Kanzawa N; Fujimi TJ; Uchida H; Okada I
    J Biomed Mater Res A; 2009 Sep; 90(3):811-8. PubMed ID: 18615469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing annulus fibrosus tissue formation in porous silk scaffolds.
    Chang G; Kim HJ; Vunjak-Novakovic G; Kaplan DL; Kandel R
    J Biomed Mater Res A; 2010 Jan; 92(1):43-51. PubMed ID: 19165797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The promotion of HL-1 cardiomyocyte beating using anisotropic collagen-GAG scaffolds.
    Gonnerman EA; Kelkhoff DO; McGregor LM; Harley BA
    Biomaterials; 2012 Dec; 33(34):8812-21. PubMed ID: 22979989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of collagen type on the behavior of adult canine annulus fibrosus cells in collagen-glycosaminoglycan scaffolds.
    Saad L; Spector M
    J Biomed Mater Res A; 2004 Nov; 71(2):233-41. PubMed ID: 15368219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical characterization of collagen-glycosaminoglycan scaffolds.
    Harley BA; Leung JH; Silva EC; Gibson LJ
    Acta Biomater; 2007 Jul; 3(4):463-74. PubMed ID: 17349829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Fabrication of collagen/sodium hyaluronate scaffold and its biological characteristics for cartilage tissue engineering].
    Wu W; Mao T; Feng X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Apr; 21(4):401-5. PubMed ID: 17546888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Primary human osteoblast culture on 3D porous collagen-hydroxyapatite scaffolds.
    Jones GL; Walton R; Czernuszka J; Griffiths SL; El Haj AJ; Cartmell SH
    J Biomed Mater Res A; 2010 Sep; 94(4):1244-50. PubMed ID: 20694991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integration of porosity and bio-functionalization to form a 3D scaffold: cell culture studies and in vitro degradation.
    Mittal A; Negi P; Garkhal K; Verma S; Kumar N
    Biomed Mater; 2010 Aug; 5(4):045001. PubMed ID: 20539055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of a natural collagen scaffold to aid cell-matrix penetration for urologic tissue engineering.
    Liu Y; Bharadwaj S; Lee SJ; Atala A; Zhang Y
    Biomaterials; 2009 Aug; 30(23-24):3865-73. PubMed ID: 19427687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.