These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 18767093)

  • 61. Advances in the Structural Strategies of the Self-Assembly of Photoresponsive Supramolecular Systems.
    Santamaria-Garcia VJ; Flores-Hernandez DR; Contreras-Torres FF; Cué-Sampedro R; Sánchez-Fernández JA
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887350
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Hypothesis-Driven, Structure-Based Design in Photopharmacology: The Case of eDHFR Inhibitors.
    Kobauri P; Galenkamp NS; Schulte AM; de Vries J; Simeth NA; Maglia G; Thallmair S; Kolarski D; Szymanski W; Feringa BL
    J Med Chem; 2022 Mar; 65(6):4798-4817. PubMed ID: 35258959
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Optical Control of Mitosis with a Photoswitchable Eg5 Inhibitor.
    Impastato AC; Shemet A; Vepřek NA; Saper G; Hess H; Rao L; Gennerich A; Trauner D
    Angew Chem Int Ed Engl; 2022 Feb; 61(9):e202115846. PubMed ID: 34958711
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Photopharmacological Applications for Cherenkov Radiation Generated by Clinically Used Radionuclides.
    Krebs M; Döbber A; Rodat T; Lützen U; Zhao Y; Zuhayra M; Peifer C
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445716
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Diarylethene-Based Photoswitchable Inhibitors of Serine Proteases.
    Babii O; Afonin S; Diel C; Huhn M; Dommermuth J; Schober T; Koniev S; Hrebonkin A; Nesterov-Mueller A; Komarov IV; Ulrich AS
    Angew Chem Int Ed Engl; 2021 Sep; 60(40):21789-21794. PubMed ID: 34268844
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Full Thermal Switching of Enzymes by Thermoresponsive Poly(2-oxazoline)-Based Enzyme Inhibitors.
    Hijazi M; Türkmen E; Tiller JC
    Chemistry; 2020 Oct; 26(59):13367-13371. PubMed ID: 32706128
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Stimulus-Responsive Regulation of Enzyme Activity for One-Step and Multi-Step Syntheses.
    Claaßen C; Gerlach T; Rother D
    Adv Synth Catal; 2019 Jun; 361(11):2387-2401. PubMed ID: 31244574
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Writing and erasing multicolored information in diarylethene-based supramolecular gels.
    Hsu CW; Sauvée C; Sundén H; Andréasson J
    Chem Sci; 2018 Nov; 9(41):8019-8023. PubMed ID: 30450186
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Photochromic coenzyme Q derivatives: switching redox potentials with light.
    Simeth NA; Kneuttinger AC; Sterner R; König B
    Chem Sci; 2017 Sep; 8(9):6474-6483. PubMed ID: 28989672
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The role of alkyl substituents in deazaadenine-based diarylethene photoswitches.
    Sarter C; Heimes M; Jäschke A
    Beilstein J Org Chem; 2016; 12():1103-10. PubMed ID: 27340498
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Design, Synthesis and Inhibitory Activity of Photoswitchable RET Kinase Inhibitors.
    Ferreira R; Nilsson JR; Solano C; Andréasson J; Grøtli M
    Sci Rep; 2015 May; 5():9769. PubMed ID: 25944708
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Acetylcholinesterase inhibitors with photoswitchable inhibition of β-amyloid aggregation.
    Chen X; Wehle S; Kuzmanovic N; Merget B; Holzgrabe U; König B; Sotriffer CA; Decker M
    ACS Chem Neurosci; 2014 May; 5(5):377-89. PubMed ID: 24628027
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Characterization of the thermal and photoinduced reactions of photochromic spiropyrans in aqueous solution.
    Hammarson M; Nilsson JR; Li S; Beke-Somfai T; Andréasson J
    J Phys Chem B; 2013 Oct; 117(43):13561-71. PubMed ID: 24143951
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Diarylethene-modified nucleotides for switching optical properties in DNA.
    Barrois S; Wagenknecht HA
    Beilstein J Org Chem; 2012; 8():905-14. PubMed ID: 23015841
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Regulation of human carbonic anhydrase I (hCAI) activity by using a photochromic inhibitor.
    Vomasta D; Högner C; Branda NR; König B
    Angew Chem Int Ed Engl; 2008; 47(40):7644-7. PubMed ID: 18767093
    [No Abstract]   [Full Text] [Related]  

  • 76. Catalytic inactivation of human carbonic anhydrase I by a metallopeptide-sulfonamide conjugate is mediated by oxidation of active site residues.
    Gokhale NH; Bradford S; Cowan JA
    J Am Chem Soc; 2008 Feb; 130(8):2388-9. PubMed ID: 18251475
    [No Abstract]   [Full Text] [Related]  

  • 77. Benzimidazo[1,2-c][1,2,3]thiadiazole-7-sulfonamides as inhibitors of carbonic anhydrase.
    Dudutiene V; Baranauskiene L; Matulis D
    Bioorg Med Chem Lett; 2007 Jun; 17(12):3335-8. PubMed ID: 17442568
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Effects of new 5-amino-1,3,4-thiadiazole-2-sulfonamide derivatives on human carbonic anhydrase isozymes.
    Kasimoğullari R; Bülbül M; Günhan H; Güleryüz H
    Bioorg Med Chem; 2009 May; 17(9):3295-301. PubMed ID: 19362844
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Two-prong inhibitors for human carbonic anhydrase II.
    Roy BC; Banerjee AL; Swanson M; Jia XG; Haldar MK; Mallik S; Srivastava DK
    J Am Chem Soc; 2004 Oct; 126(41):13206-7. PubMed ID: 15479058
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Naturally occurring di- and trithiophenes.
    Kagan J
    Fortschr Chem Org Naturst; 1991; 56():87-169. PubMed ID: 2050313
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.