These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 18767204)
1. An autoregressive linear mixed effects model for the analysis of longitudinal data which include dropouts and show profiles approaching asymptotes. Funatogawa T; Funatogawa I; Takeuchi M Stat Med; 2008 Dec; 27(30):6351-66. PubMed ID: 18767204 [TBL] [Abstract][Full Text] [Related]
2. Marginalized transition models for longitudinal binary data with ignorable and non-ignorable drop-out. Kurland BF; Heagerty PJ Stat Med; 2004 Sep; 23(17):2673-95. PubMed ID: 15316952 [TBL] [Abstract][Full Text] [Related]
3. Applying linear mixed models to estimate reliability in clinical trial data with repeated measurements. Vangeneugden T; Laenen A; Geys H; Renard D; Molenberghs G Control Clin Trials; 2004 Feb; 25(1):13-30. PubMed ID: 14980746 [TBL] [Abstract][Full Text] [Related]
4. A local sensitivity analysis approach to longitudinal non-Gaussian data with non-ignorable dropout. Xie H Stat Med; 2008 Jul; 27(16):3155-77. PubMed ID: 17948917 [TBL] [Abstract][Full Text] [Related]
5. Multiple imputation under Bayesianly smoothed pattern-mixture models for non-ignorable drop-out. Demirtas H Stat Med; 2005 Aug; 24(15):2345-63. PubMed ID: 15977286 [TBL] [Abstract][Full Text] [Related]
6. Conditional mixed models adjusting for non-ignorable drop-out with administrative censoring in longitudinal studies. Li J; Schluchter MD Stat Med; 2004 Nov; 23(22):3489-503. PubMed ID: 15505888 [TBL] [Abstract][Full Text] [Related]
7. An autoregressive linear mixed effects model for the analysis of unequally spaced longitudinal data with dose-modification. Funatogawa I; Funatogawa T Stat Med; 2012 Mar; 31(6):589-99. PubMed ID: 22170221 [TBL] [Abstract][Full Text] [Related]
8. Testing for misspecification in generalized linear mixed models. Abad AA; Litière S; Molenberghs G Biostatistics; 2010 Oct; 11(4):771-86. PubMed ID: 20407039 [TBL] [Abstract][Full Text] [Related]
9. A comparison of the random-effects pattern mixture model with last-observation-carried-forward (LOCF) analysis in longitudinal clinical trials with dropouts. Siddiqui O; Ali MW J Biopharm Stat; 1998 Nov; 8(4):545-63. PubMed ID: 9855033 [TBL] [Abstract][Full Text] [Related]
10. Covariate adjustment in clinical trials with non-ignorable missing data and non-compliance. Levy DE; O'Malley AJ; Normand SL Stat Med; 2004 Aug; 23(15):2319-39. PubMed ID: 15273951 [TBL] [Abstract][Full Text] [Related]
11. On the performance of random-coefficient pattern-mixture models for non-ignorable drop-out. Demirtas H; Schafer JL Stat Med; 2003 Aug; 22(16):2553-75. PubMed ID: 12898544 [TBL] [Abstract][Full Text] [Related]
12. Random effects and latent processes approaches for analyzing binary longitudinal data with missingness: a comparison of approaches using opiate clinical trial data. Albert PS; Follmann DA Stat Methods Med Res; 2007 Oct; 16(5):417-39. PubMed ID: 17656452 [TBL] [Abstract][Full Text] [Related]
13. An alternative parameterization of the general linear mixture model for longitudinal data with non-ignorable drop-outs. Fitzmaurice GM; Laird NM; Shneyer L Stat Med; 2001 Apr; 20(7):1009-21. PubMed ID: 11276032 [TBL] [Abstract][Full Text] [Related]
14. Mixed effects logistic regression models for longitudinal binary response data with informative drop-out. Ten Have TR; Kunselman AR; Pulkstenis EP; Landis JR Biometrics; 1998 Mar; 54(1):367-83. PubMed ID: 9544529 [TBL] [Abstract][Full Text] [Related]
15. Modelling placebo response in depression trials using a longitudinal model with informative dropout. Gomeni R; Lavergne A; Merlo-Pich E Eur J Pharm Sci; 2009 Jan; 36(1):4-10. PubMed ID: 19041717 [TBL] [Abstract][Full Text] [Related]
16. Missing covariates in longitudinal data with informative dropouts: bias analysis and inference. Roy J; Lin X Biometrics; 2005 Sep; 61(3):837-46. PubMed ID: 16135036 [TBL] [Abstract][Full Text] [Related]
17. Comparison of data analysis strategies for intent-to-treat analysis in pre-test-post-test designs with substantial dropout rates. Salim A; Mackinnon A; Christensen H; Griffiths K Psychiatry Res; 2008 Sep; 160(3):335-45. PubMed ID: 18718673 [TBL] [Abstract][Full Text] [Related]
18. Modeling longitudinal count data with dropouts. Alosh M Pharm Stat; 2010; 9(1):35-45. PubMed ID: 19191272 [TBL] [Abstract][Full Text] [Related]
19. An index of local sensitivity to non-ignorability for multivariate longitudinal mixed data with potential non-random dropout. Mahabadi SE; Ganjali M Stat Med; 2010 Jul; 29(17):1779-92. PubMed ID: 20658547 [TBL] [Abstract][Full Text] [Related]
20. An autoregressive linear mixed effects model for the analysis of longitudinal data which show profiles approaching asymptotes. Funatogawa I; Funatogawa T; Ohashi Y Stat Med; 2007 Apr; 26(9):2113-30. PubMed ID: 16900564 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]