These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 18767352)

  • 1. Large-scale Protein-Protein Interaction prediction using novel kernel methods.
    Chen XW; Han B; Fang J; Haasl RJ
    Int J Data Min Bioinform; 2008; 2(2):145-56. PubMed ID: 18767352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational methods for predicting protein-protein interactions.
    Pitre S; Alamgir M; Green JR; Dumontier M; Dehne F; Golshani A
    Adv Biochem Eng Biotechnol; 2008; 110():247-67. PubMed ID: 18202838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive diffusion kernel learning from biological networks for protein function prediction.
    Sun L; Ji S; Ye J
    BMC Bioinformatics; 2008 Mar; 9():162. PubMed ID: 18366736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning kernels from biological networks by maximizing entropy.
    Tsuda K; Noble WS
    Bioinformatics; 2004 Aug; 20 Suppl 1():i326-33. PubMed ID: 15262816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovery of small protein complexes from PPI networks with size-specific supervised weighting.
    Yong CH; Maruyama O; Wong L
    BMC Syst Biol; 2014; 8 Suppl 5(Suppl 5):S3. PubMed ID: 25559663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supervised inference of gene-regulatory networks.
    To CC; Vohradsky J
    BMC Bioinformatics; 2008 Jan; 9():2. PubMed ID: 18177495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovering functional interaction patterns in protein-protein interaction networks.
    Turanalp ME; Can T
    BMC Bioinformatics; 2008 Jun; 9():276. PubMed ID: 18547430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determining effects of non-synonymous SNPs on protein-protein interactions using supervised and semi-supervised learning.
    Zhao N; Han JG; Shyu CR; Korkin D
    PLoS Comput Biol; 2014 May; 10(5):e1003592. PubMed ID: 24784581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Designing focused chemical libraries enriched in protein-protein interaction inhibitors using machine-learning methods.
    Reynès C; Host H; Camproux AC; Laconde G; Leroux F; Mazars A; Deprez B; Fahraeus R; Villoutreix BO; Sperandio O
    PLoS Comput Biol; 2010 Mar; 6(3):e1000695. PubMed ID: 20221258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using product kernels to predict protein interactions.
    Martin S; Brown WM; Faulon JL
    Adv Biochem Eng Biotechnol; 2008; 110():215-45. PubMed ID: 17922100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clustering algorithms for detecting functional modules in protein interaction networks.
    Gao L; Sun PG; Song J
    J Bioinform Comput Biol; 2009 Feb; 7(1):217-42. PubMed ID: 19226668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of Protein-Protein Interaction via co-occurring Aligned Pattern Clusters.
    Sze-To A; Fung S; Lee EA; Wong AKC
    Methods; 2016 Nov; 110():26-34. PubMed ID: 27476008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Essential latent knowledge for protein-protein interactions: analysis by an unsupervised learning approach.
    Mamitsuka H
    IEEE/ACM Trans Comput Biol Bioinform; 2005; 2(2):119-30. PubMed ID: 17044177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovering novel protein-protein interactions by measuring the protein semantic similarity from the biomedical literature.
    Chiang JH; Ju JH
    J Bioinform Comput Biol; 2014 Dec; 12(6):1442008. PubMed ID: 25385082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving protein protein interaction prediction based on phylogenetic information using a least-squares support vector machine.
    Craig RA; Liao L
    Ann N Y Acad Sci; 2007 Dec; 1115():154-67. PubMed ID: 17925357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating support for protein-protein interaction data with applications to function prediction.
    Zeng E; Ding C; Narasimhan G; Holbrook SR
    Comput Syst Bioinformatics Conf; 2008; 7():73-84. PubMed ID: 19642270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supervised reconstruction of biological networks with local models.
    Bleakley K; Biau G; Vert JP
    Bioinformatics; 2007 Jul; 23(13):i57-65. PubMed ID: 17646345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting the interactome of Xanthomonas oryzae pathovar oryzae for target selection and DB service.
    Kim JG; Park D; Kim BC; Cho SW; Kim YT; Park YJ; Cho HJ; Park H; Kim KB; Yoon KO; Park SJ; Lee BM; Bhak J
    BMC Bioinformatics; 2008 Jan; 9():41. PubMed ID: 18215330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-scale protein-protein interactions detection by integrating big biosensing data with computational model.
    You ZH; Li S; Gao X; Luo X; Ji Z
    Biomed Res Int; 2014; 2014():598129. PubMed ID: 25215285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition.
    Melvin I; Ie E; Kuang R; Weston J; Stafford WN; Leslie C
    BMC Bioinformatics; 2007 May; 8 Suppl 4(Suppl 4):S2. PubMed ID: 17570145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.