BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 1876762)

  • 1. The oxygen debt hypothesis in juvenile rainbow trout after exhaustive exercise.
    Scarabello M; Heigenhauser GJ; Wood CM
    Respir Physiol; 1991 May; 84(2):245-59. PubMed ID: 1876762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gas exchange, metabolite status and excess post-exercise oxygen consumption after repetitive bouts of exhaustive exercise in juvenile rainbow trout.
    Scarabello M; Heigenhauser GJ; Wood CM
    J Exp Biol; 1992 Jun; 167():155-69. PubMed ID: 1634861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic bases of excess post-exercise oxygen consumption: a review.
    Gaesser GA; Brooks GA
    Med Sci Sports Exerc; 1984; 16(1):29-43. PubMed ID: 6369064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exhaustive exercise does not affect the preferred temperature for recovery in juvenile rainbow trout (Oncorhynchus mykiss).
    Clutterham S; Gamperl AK; Wallace HL; Crawshaw LI; Farrell AP
    Physiol Biochem Zool; 2004; 77(4):611-8. PubMed ID: 15449232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrating metabolic pathways in post-exercise recovery of white muscle.
    Schulte PM; Moyes CD; Hochachka PW
    J Exp Biol; 1992 May; 166():181-95. PubMed ID: 1602273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organization of energy provision in rainbow trout during exercise.
    Parkhouse WS; Dobson GP; Hochachka PW
    Am J Physiol; 1988 Feb; 254(2 Pt 2):R302-9. PubMed ID: 3344838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tissue intracellular acid-base status and the fate of lactate after exhaustive exercise in the rainbow trout.
    Milligan CL; Wood CM
    J Exp Biol; 1986 Jul; 123():123-44. PubMed ID: 3746191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recovery metabolism of trout white muscle: role of mitochondria.
    Moyes CD; Schulte PM; Hochachka PW
    Am J Physiol; 1992 Feb; 262(2 Pt 2):R295-304. PubMed ID: 1539738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The physiological response of diploid and triploid brook trout to exhaustive exercise.
    Hyndman CA; Kieffer JD; Benfey TJ
    Comp Biochem Physiol A Mol Integr Physiol; 2003 Jan; 134(1):167-79. PubMed ID: 12507620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The first direct measurements of ventilatory flow and oxygen utilization after exhaustive exercise and voluntary feeding in a teleost fish, Oncorhynchus mykiss.
    Eom J; Wood CM
    Fish Physiol Biochem; 2023 Dec; 49(6):1129-1149. PubMed ID: 37874498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lactate, ATP, and CP in working muscles during exhaustive exercise in man.
    Karlsson J; Saltin B
    J Appl Physiol; 1970 Nov; 29(5):596-602. PubMed ID: 5474850
    [No Abstract]   [Full Text] [Related]  

  • 12. Resynthesis of creatine phosphate in human muscle after exercise in relation to intramuscular pH and availability of oxygen.
    Sahlin K; Harris RC; Hultman E
    Scand J Clin Lab Invest; 1979 Oct; 39(6):551-8. PubMed ID: 43580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscle lactate metabolism in recovery from intense exhaustive exercise: impact of light exercise.
    Bangsbo J; Graham T; Johansen L; Saltin B
    J Appl Physiol (1985); 1994 Oct; 77(4):1890-5. PubMed ID: 7836214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of blood glucose in the restoration of muscle glycogen during recovery from exhaustive exercise in rainbow trout (Oncorhynchus mykiss) and winter flounder (Pseudopleuronectes americanus).
    Pagnotta A; Milligan CL
    J Exp Biol; 1991 Nov; 161():489-508. PubMed ID: 1757776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interpreting energy expenditure for anaerobic exercise and recovery: an anaerobic hypothesis.
    Scott CB
    J Sports Med Phys Fitness; 1997 Mar; 37(1):18-23. PubMed ID: 9190121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anaerobic energy production and O2 deficit-debt relationship during exhaustive exercise in humans.
    Bangsbo J; Gollnick PD; Graham TE; Juel C; Kiens B; Mizuno M; Saltin B
    J Physiol; 1990 Mar; 422():539-59. PubMed ID: 2352192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of exercise intensity, duration and mode on post-exercise oxygen consumption.
    Børsheim E; Bahr R
    Sports Med; 2003; 33(14):1037-60. PubMed ID: 14599232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of red blood cell metabolism in rainbow trout after exhaustive exercise.
    Wood CM; Walsh PJ; Thomas S; Perry SF
    J Exp Biol; 1990 Nov; 154():491-507. PubMed ID: 2126030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elevated muscle glycogen and anaerobic energy production during exhaustive exercise in man.
    Bangsbo J; Graham TE; Kiens B; Saltin B
    J Physiol; 1992; 451():205-27. PubMed ID: 1403811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exercise and recovery metabolism in the Pacific spiny dogfish (Squalus acanthias).
    Richards JG; Heigenhauser GJ; Wood CM
    J Comp Physiol B; 2003 Aug; 173(6):463-74. PubMed ID: 12851779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.