These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 18767651)

  • 1. Factors influencing luxury uptake of phosphorus by microalgae in waste stabilization ponds.
    Powell N; Shilton AN; Pratt S; Chisti Y
    Environ Sci Technol; 2008 Aug; 42(16):5958-62. PubMed ID: 18767651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards a luxury uptake process via microalgae--defining the polyphosphate dynamics.
    Powell N; Shilton A; Chisti Y; Pratt S
    Water Res; 2009 Sep; 43(17):4207-13. PubMed ID: 19616819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determining variables that influence the phosphorus content of waste stabilization pond algae.
    Sells MD; Brown N; Shilton AN
    Water Res; 2018 Apr; 132():301-308. PubMed ID: 29334649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphate release from waste stabilisation pond sludge: significance and fate of polyphosphate.
    Powell N; Shilton A; Pratt S; Chisti Y
    Water Sci Technol; 2011; 63(8):1689-94. PubMed ID: 21866769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Luxury uptake of phosphorus by microalgae in full-scale waste stabilisation ponds.
    Powell N; Shilton A; Pratt S; Chisti Y
    Water Sci Technol; 2011; 63(4):704-9. PubMed ID: 21330717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microalgal luxury uptake of phosphorus in waste stabilization ponds - frequency of occurrence and high performing genera.
    Crimp A; Brown N; Shilton A
    Water Sci Technol; 2018 Aug; 78(1-2):165-173. PubMed ID: 30101799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting phosphorus accumulation and proposing conditions needed for an algal-based phosphorus uptake process.
    Brown N; Sells M; Jayamaha N; Shilton A
    Environ Technol; 2024 Sep; 45(21):4408-4418. PubMed ID: 37642365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of Polyphosphate Degradation in
    Ryu HB; Kang MJ; Choi KM; Yang IK; Hong SJ; Lee CG
    J Microbiol Biotechnol; 2024 Feb; 34(2):407-414. PubMed ID: 38247220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting microalgae growth and phosphorus removal in cold region waste stabilization ponds using a stochastic modelling approach.
    Schmidt JJ; Gagnon GA; Jamieson RC
    Environ Sci Pollut Res Int; 2018 Nov; 25(33):32952-32963. PubMed ID: 28660515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissolved organic phosphorus bioremediation from food-waste centrate using microalgae.
    Sutherland DL; Bramucci A
    J Environ Manage; 2022 Jul; 313():115018. PubMed ID: 35405545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of intracellular polyphosphate dynamics in enhanced biological phosphorus removal process using Raman microscopy.
    Majed N; Matthäus C; Diem M; Gu AZ
    Environ Sci Technol; 2009 Jul; 43(14):5436-42. PubMed ID: 19708378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduced sludge production in a membrane bioreactor by uncoupling metabolism and its effect on phosphorus accumulation in the biomass.
    Na JH; Nam DH; Ko BG; Lee CY; Kang KH
    Environ Technol; 2017 Dec; 38(23):3007-3015. PubMed ID: 28110608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Luxury uptake of phosphorus changes the accumulation of starch and lipid in Chlorella sp. under nitrogen depletion.
    Zhu S; Wang Y; Xu J; Shang C; Wang Z; Xu J; Yuan Z
    Bioresour Technol; 2015 Dec; 198():165-71. PubMed ID: 26386419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorus metabolism and population dynamics in a biological phosphate-removal system with simultaneous anaerobic phosphate stripping.
    Lv JH; Yuan LJ; Chen X; Liu L; Luo DC
    Chemosphere; 2014 Dec; 117():715-21. PubMed ID: 25461939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimizing phosphorus removal for municipal wastewater post-treatment with Chlorella vulgaris.
    Lavrinovičs A; Mežule L; Cacivkins P; Juhna T
    J Environ Manage; 2022 Dec; 324():116313. PubMed ID: 36191504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pilot-scale evaluation of the application of low pH-inducible polyphosphate accumulation to the biological removal of phosphate from wastewaters.
    Mullan A; McGrath JW; Adamson T; Irwin S; Quinn JP
    Environ Sci Technol; 2006 Jan; 40(1):296-301. PubMed ID: 16433364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorus removal using a microalgal biofilm in a new biofilm photobioreactor for tertiary wastewater treatment.
    Sukačová K; Trtílek M; Rataj T
    Water Res; 2015 Mar; 71():55-63. PubMed ID: 25594825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biology of polyphosphate-accumulating bacteria involved in enhanced biological phosphorus removal.
    Kortstee GJ; Appeldoorn KJ; Bonting CF; van Niel EW; van Veen HW
    FEMS Microbiol Rev; 1994 Oct; 15(2-3):137-53. PubMed ID: 7946465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulating the Interplay between the Uptake of Inorganic Phosphate and the Cell Phosphate Metabolism under Phosphorus Feast and Famine Conditions in
    Plyusnina TY; Khruschev SS; Fursova PV; Solovchenko AE; Antal TK; Riznichenko GY; Rubin AB
    Cells; 2021 Dec; 10(12):. PubMed ID: 34944079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.