These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 18767680)

  • 41. Fate of arsenite and arsenate in flooded and not flooded soils of southwest Bangladesh irrigated with arsenic contaminated water.
    Martin M; Violante A; Barberis E
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Oct; 42(12):1775-83. PubMed ID: 17952778
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The fate of arsenic in soil-plant systems.
    Moreno-Jiménez E; Esteban E; Peñalosa JM
    Rev Environ Contam Toxicol; 2012; 215():1-37. PubMed ID: 22057929
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dissolution of arsenic minerals mediated by dissimilatory arsenate reducing bacteria: estimation of the physiological potential for arsenic mobilization.
    Lukasz D; Liwia R; Aleksandra M; Aleksandra S
    Biomed Res Int; 2014; 2014():841892. PubMed ID: 24724102
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Combination of microbial oxidation and biogenic schwertmannite immobilization: A potential remediation for highly arsenic-contaminated soil.
    Yang Z; Wu Z; Liao Y; Liao Q; Yang W; Chai L
    Chemosphere; 2017 Aug; 181():1-8. PubMed ID: 28414954
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Arsenic dissolution from Japanese paddy soil by a dissimilatory arsenate-reducing bacterium Geobacter sp. OR-1.
    Ohtsuka T; Yamaguchi N; Makino T; Sakurai K; Kimura K; Kudo K; Homma E; Dong DT; Amachi S
    Environ Sci Technol; 2013 Jun; 47(12):6263-71. PubMed ID: 23668621
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microbial reactions and environmental factors affecting the dissolution and release of arsenic in the severely contaminated soils under anaerobic or aerobic conditions.
    Chen X; Zeng XC; Kawa YK; Wu W; Zhu X; Ullah Z; Wang Y
    Ecotoxicol Environ Saf; 2020 Feb; 189():109946. PubMed ID: 31759742
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Schwertmannite transformation via direct or indirect electron transfer by a sulfate reducing enrichment culture.
    Zeng Y; Wang H; Guo C; Wan J; Fan C; Reinfelder JR; Lu G; Wu F; Huang W; Dang Z
    Environ Pollut; 2018 Nov; 242(Pt A):738-748. PubMed ID: 30031307
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Probing the biogeochemistry of arsenic: response of two contrasting aquifer sediments from Cambodia to stimulation by arsenate and ferric iron.
    Pederick RL; Gault AG; Charnock JM; Polya DA; Lloyd JR
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Oct; 42(12):1763-74. PubMed ID: 17952777
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A humic substance analogue AQDS stimulates Geobacter sp. abundance and enhances pentachlorophenol transformation in a paddy soil.
    Chen M; Tong H; Liu C; Chen D; Li F; Qiao J
    Chemosphere; 2016 Oct; 160():141-8. PubMed ID: 27372263
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Interactions between the Fe(III)-reducing bacterium Geobacter sulfurreducens and arsenate, and capture of the metalloid by biogenic Fe(II).
    Islam FS; Pederick RL; Gault AG; Adams LK; Polya DA; Charnock JM; Lloyd JR
    Appl Environ Microbiol; 2005 Dec; 71(12):8642-8. PubMed ID: 16332858
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Oxidation-reduction transformations of chromium in aerobic soils and the role of electron-shuttling quinones.
    Brose DA; James BR
    Environ Sci Technol; 2010 Dec; 44(24):9438-44. PubMed ID: 21105643
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Redox-stat bioreactors for elucidating mobilisation mechanisms of trace elements: an example of As-contaminated mining soils.
    Rajpert L; Schäffer A; Lenz M
    Appl Microbiol Biotechnol; 2018 Sep; 102(17):7635-7641. PubMed ID: 29931602
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Decreasing arsenic bioaccessibility/bioavailability in soils with iron amendments.
    Subacz JL; Barnett MO; Jardine PM; Stewart MA
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Jul; 42(9):1317-29. PubMed ID: 17654151
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Arsenic(V) Incorporation in Vivianite during Microbial Reduction of Arsenic(V)-Bearing Biogenic Fe(III) (Oxyhydr)oxides.
    Muehe EM; Morin G; Scheer L; Pape PL; Esteve I; Daus B; Kappler A
    Environ Sci Technol; 2016 Mar; 50(5):2281-91. PubMed ID: 26828118
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Simultaneous remediation of As(III) and dibutyl phthalate (DBP) in soil by a manganese-oxidizing bacterium and its mechanisms.
    He Z; Li Z; Zhang Q; Wei Z; Duo J; Pan X
    Chemosphere; 2019 Apr; 220():837-844. PubMed ID: 30612053
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The role of dissimilatory arsenate reducing bacteria in the biogeochemical cycle of arsenic based on the physiological and functional analysis of Aeromonas sp. O23A.
    Uhrynowski W; Debiec K; Sklodowska A; Drewniak L
    Sci Total Environ; 2017 Nov; 598():680-689. PubMed ID: 28454040
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Arsenic mobility during flooding of contaminated soil: the effect of microbial sulfate reduction.
    Burton ED; Johnston SG; Kocar BD
    Environ Sci Technol; 2014 Dec; 48(23):13660-7. PubMed ID: 25346449
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Microbiology of inorganic arsenic: From metabolism to bioremediation.
    Yamamura S; Amachi S
    J Biosci Bioeng; 2014 Jul; 118(1):1-9. PubMed ID: 24507904
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Roles of different active metal-reducing bacteria in arsenic release from arsenic-contaminated paddy soil amended with biochar.
    Qiao JT; Li XM; Li FB
    J Hazard Mater; 2018 Feb; 344():958-967. PubMed ID: 29197791
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synergistic effects of the combination of oxalate and ascorbate on arsenic extraction from contaminated soils.
    Lee JC; Kim EJ; Baek K
    Chemosphere; 2017 Feb; 168():1439-1446. PubMed ID: 27923505
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.