These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 18767684)

  • 21. Selective reduction of Cr(VI) in chromium, copper and arsenic (CCA) mixed waste streams using UV/TiO2 photocatalysis.
    Zheng S; Jiang W; Rashid M; Cai Y; Dionysiou DD; O'Shea KE
    Molecules; 2015 Feb; 20(2):2622-35. PubMed ID: 25654531
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China.
    Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C
    Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Arsenic redox changes by microbially and chemically formed semiquinone radicals and hydroquinones in a humic substance model quinone.
    Jiang J; Bauer I; Paul A; Kappler A
    Environ Sci Technol; 2009 May; 43(10):3639-45. PubMed ID: 19544866
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparision of photocatalysis and photolysis processes for arsenic oxidation in water.
    Fontana KB; Lenzi GG; Seára ECR; Chaves ES
    Ecotoxicol Environ Saf; 2018 Apr; 151():127-131. PubMed ID: 29331917
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sono-Fenton process for metronidazole degradation in aqueous solution: Effect of acoustic cavitation and peroxydisulfate anion.
    Ammar HB
    Ultrason Sonochem; 2016 Nov; 33():164-169. PubMed ID: 27245967
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effective reduction and recovery of As(III) and As(V) from alkaline wastewater by thiourea dioxide: Efficiency and mechanism.
    Zhu F; Kong L; He M; Fang D; Hu X; Peng X
    Water Res; 2023 Sep; 243():120355. PubMed ID: 37506638
    [TBL] [Abstract][Full Text] [Related]  

  • 27. TiO₂-photocatalytic reduction of pentavalent and trivalent arsenic: production of elemental arsenic and arsine.
    Levy IK; Mizrahi M; Ruano G; Zampieri G; Requejo FG; Litter MI
    Environ Sci Technol; 2012 Feb; 46(4):2299-308. PubMed ID: 22225475
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aqueous arsenite removal by simultaneous ultraviolet photocatalytic oxidation-coagulation of titanium sulfate.
    Wang Y; Duan J; Li W; Beecham S; Mulcahy D
    J Hazard Mater; 2016 Feb; 303():162-70. PubMed ID: 26530893
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Natural attenuation of arsenic by sediment sorption and oxidation.
    Choi S; O'Day PA; Hering JG
    Environ Sci Technol; 2009 Jun; 43(12):4253-9. PubMed ID: 19603631
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Arsenic(III) and iron(II) co-oxidation by oxygen and hydrogen peroxide: divergent reactions in the presence of organic ligands.
    Wang Z; Bush RT; Liu J
    Chemosphere; 2013 Nov; 93(9):1936-41. PubMed ID: 23880239
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oxidation of sulfoxides and arsenic(III) in corrosion of nanoscale zero valent iron by oxygen: evidence against ferryl ions (Fe(IV)) as active intermediates in Fenton reaction.
    Pang SY; Jiang J; Ma J
    Environ Sci Technol; 2011 Jan; 45(1):307-12. PubMed ID: 21133375
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Model Study of the Photochemical Fate of As(III) in Paddy-Water.
    Carena L; Vione D
    Molecules; 2017 Mar; 22(3):. PubMed ID: 28287457
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photocatalytic oxidation of arsenite in TiO2 suspension: kinetics and mechanisms.
    Lee H; Choi W
    Environ Sci Technol; 2002 Sep; 36(17):3872-8. PubMed ID: 12322763
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Selective oxidation of arsenite by peroxymonosulfate with high utilization efficiency of oxidant.
    Wang Z; Bush RT; Sullivan LA; Chen C; Liu J
    Environ Sci Technol; 2014 Apr; 48(7):3978-85. PubMed ID: 24580110
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photodegradation of 4-tert-butylphenol in aqueous solution by UV-C, UV/H2O2 and UV/S2O8(2-) system.
    Wu Y; Zhu X; Chen H; Dong W; Zhao J
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016; 51(5):440-5. PubMed ID: 26819047
    [TBL] [Abstract][Full Text] [Related]  

  • 36. TiO2-photocatalyzed As(III) oxidation in a fixed-bed, flow-through reactor.
    Ferguson MA; Hering JG
    Environ Sci Technol; 2006 Jul; 40(13):4261-7. PubMed ID: 16856744
    [TBL] [Abstract][Full Text] [Related]  

  • 37. pH effects of the arsenite photocatalytic oxidation reaction on different anatase TiO
    Wei Z; Fang Y; Wang Z; Liu Y; Wu Y; Liang K; Yan J; Pan Z; Hu G
    Chemosphere; 2019 Jun; 225():434-442. PubMed ID: 30889407
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of the photooxidation efficiency of As(III) applying the UVC/oxalate technique.
    Jiang B; Xin S; He H; Liu X; Gao L; Tang Y; Bi X
    Chemosphere; 2017 Sep; 182():356-363. PubMed ID: 28505577
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Natural montmorillonite induced photooxidation of As(III) in aqueous suspensions: roles and sources of hydroxyl and hydroperoxyl/superoxide radicals.
    Wang Y; Xu J; Li J; Wu F
    J Hazard Mater; 2013 Sep; 260():255-62. PubMed ID: 23770489
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bacterial formation of tooeleite and mixed arsenic(III) or arsenic(V)-iron(III) gels in the Carnoulès acid mine drainage, France. A XANES, XRD, and SEM study.
    Morin G; Juillot F; Casiot C; Bruneel O; Personné JC; Elbaz-Poulichet F; Leblanc M; Ildefonse P; Calas G
    Environ Sci Technol; 2003 May; 37(9):1705-12. PubMed ID: 12775038
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.