These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 18767729)

  • 41. Efficacy of VectoBac (Bacillus thuringiensis variety israelensis) formulations for mosquito control in Australia.
    Russell TL; Brown MD; Purdie DM; Ryan PA; Kay BH
    J Econ Entomol; 2003 Dec; 96(6):1786-91. PubMed ID: 14977116
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Esterases as biomarkers in Nereis (Hediste) diversicolor exposed to temephos and Bacillus thuringiensis var. israelensis used for mosquito control in coastal wetlands of Morbihan (Brittany, France).
    Fourcy D; Jumel A; Heydorff M; Lagadic L
    Mar Environ Res; 2002; 54(3-5):755-9. PubMed ID: 12408646
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Larvicidal activity of Asarum heterotropoides root constituents against insecticide-susceptible and -resistant Culex pipiens pallens and Aedes aegypti and Ochlerotatus togoi.
    Perumalsamy H; Chang KS; Park C; Ahn YJ
    J Agric Food Chem; 2010 Sep; 58(18):10001-6. PubMed ID: 20806890
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Aedes albopictus (Diptera: Culicidae) in Rome: experimental study of relevant control strategy parameters].
    Pombi M; Costantini C; della Torre A
    Parassitologia; 2003 Jun; 45(2):97-102. PubMed ID: 15267004
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Overexpression of polyphosphate kinase gene (ppk) increases bioinsecticide production by Bacillus thuringiensis.
    Doruk T; Avican U; Camci IY; Gedik ST
    Microbiol Res; 2013 May; 168(4):199-203. PubMed ID: 23369305
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Efficacy of vectobac DT and culinexcombi against mosquito larvae in unused swimming pools in Malindi, Kenya.
    Kahindi SC; Midega JT; Mwangangi JM; Kibe LW; Nzovu J; Luethy P; Githure J; Mbogo CM
    J Am Mosq Control Assoc; 2008 Dec; 24(4):538-42. PubMed ID: 19181062
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sublethal effects of mosquito larvicides on swimming performance of larvivorous fish Melanotaenia duboulayi (Atheriniformes: Melanotaeniidae).
    Hurst TP; Kay BH; Ryan PA; Brown MD
    J Econ Entomol; 2007 Feb; 100(1):61-5. PubMed ID: 17370810
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Susceptibility of Culex quinquefasciatus (Diptera: Culicidae) in Southern Louisiana to Larval Insecticides.
    DeLisi N; Ottea J; Healy K
    J Econ Entomol; 2017 Dec; 110(6):2562-2567. PubMed ID: 29029136
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The use of Aedes aegypti larvae attractants to enhance the effectiveness of larvicides.
    Gonzalez PV; Harburguer L; González-Audino PA; Masuh HM
    Parasitol Res; 2016 Jun; 115(6):2185-90. PubMed ID: 26922177
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Pulse-exposure effects of selected insecticides to juvenile Australian crimson-spotted rainbowfish (Melanotaenia duboulayi).
    Brown MD; Carter J; Thomas D; Purdie DM; Kay BH
    J Econ Entomol; 2002 Apr; 95(2):294-8. PubMed ID: 12020003
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Growth & toxicity of Bacillus thuringiensis var israelensis.
    Desai SY; Shethna YI
    Indian J Med Res; 1989 Sep; 89():314-21. PubMed ID: 2628294
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Toxicity of Bacillus thuringiensis var. israelensis formulations, spinosad, and selected synthetic insecticides to Chironomus tepperi larvae.
    Stevens MM; Helliwell S; Hughes PA
    J Am Mosq Control Assoc; 2005 Dec; 21(4):446-50. PubMed ID: 16506570
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Combining Attractants and Larvicides in Biodegradable Matrices for Sustainable Mosquito Vector Control.
    Schorkopf DL; Spanoudis CG; Mboera LE; Mafra-Neto A; Ignell R; Dekker T
    PLoS Negl Trop Dis; 2016 Oct; 10(10):e0005043. PubMed ID: 27768698
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Insecticide resistance in Culex pipiens from New York.
    Paul A; Harrington LC; Zhang L; Scott JG
    J Am Mosq Control Assoc; 2005 Sep; 21(3):305-9. PubMed ID: 16252522
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The Efficacy of the
    Dawson D; Salice CJ; Subbiah S
    J Am Mosq Control Assoc; 2019 Jun; 35(2):97-106. PubMed ID: 31442132
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Susceptibility of Culex pipiens (Diptera: Culicidae) field populations in Cyprus to conventional organic insecticides, Bacillus thuringiensis subsp. israelensis, and methoprene.
    Vasquez MI; Violaris M; Hadjivassilis A; Wirth MC
    J Med Entomol; 2009 Jul; 46(4):881-7. PubMed ID: 19645293
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Insecticidal potency of Aspergillus terreus against larvae and pupae of three mosquito species Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti.
    Ragavendran C; Natarajan D
    Environ Sci Pollut Res Int; 2015 Nov; 22(21):17224-37. PubMed ID: 26139412
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Differential protein expression in the midgut of Culex quinquefasciatus mosquitoes induced by the insecticide temephos.
    Games PD; Alves SN; Katz BB; Tomich JM; Serrão JE
    Med Vet Entomol; 2016 Sep; 30(3):253-63. PubMed ID: 27072633
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Influence of selected antibiotics on the response of black fly (Simulium vittatum) larvae to insecticidal proteins produced by Bacillus thuringiensis subsp. israelensis.
    Iburg JP; Gray EW; Wyatt RD; Noblet R
    Environ Toxicol Chem; 2010 Aug; 29(8):1849-53. PubMed ID: 20821641
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synergy between toxins of Bacillus thuringiensis subsp. israelensis and Bacillus sphaericus.
    Wirth MC; Jiannino JA; Federici BA; Walton WE
    J Med Entomol; 2004 Sep; 41(5):935-41. PubMed ID: 15535624
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.