BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 18767788)

  • 1. Lipid bilayer curvature and pore formation induced by charged linear polymers and dendrimers: the effect of molecular shape.
    Lee H; Larson RG
    J Phys Chem B; 2008 Oct; 112(39):12279-85. PubMed ID: 18767788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coarse-grained molecular dynamics studies of the concentration and size dependence of fifth- and seventh-generation PAMAM dendrimers on pore formation in DMPC bilayer.
    Lee H; Larson RG
    J Phys Chem B; 2008 Jul; 112(26):7778-84. PubMed ID: 18543869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulations of PAMAM dendrimer-induced pore formation in DPPC bilayers with a coarse-grained model.
    Lee H; Larson RG
    J Phys Chem B; 2006 Sep; 110(37):18204-11. PubMed ID: 16970437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of poly(amidoamine) dendrimers with supported lipid bilayers and cells: hole formation and the relation to transport.
    Hong S; Bielinska AU; Mecke A; Keszler B; Beals JL; Shi X; Balogh L; Orr BG; Baker JR; Banaszak Holl MM
    Bioconjug Chem; 2004; 15(4):774-82. PubMed ID: 15264864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiscale modeling of dendrimers and their interactions with bilayers and polyelectrolytes.
    Lee H; Larson RG
    Molecules; 2009 Jan; 14(1):423-38. PubMed ID: 19158654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specific binding structures of dendrimers on lipid bilayer membranes.
    Wang YL; Lu ZY; Laaksonen A
    Phys Chem Chem Phys; 2012 Jun; 14(23):8348-59. PubMed ID: 22585181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction study between maltose-modified PPI dendrimers and lipidic model membranes.
    Wrobel D; Appelhans D; Signorelli M; Wiesner B; Fessas D; Scheler U; Voit B; Maly J
    Biochim Biophys Acta; 2015 Jul; 1848(7):1490-501. PubMed ID: 25843678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthetic and natural polycationic polymer nanoparticles interact selectively with fluid-phase domains of DMPC lipid bilayers.
    Mecke A; Lee DK; Ramamoorthy A; Orr BG; Holl MM
    Langmuir; 2005 Sep; 21(19):8588-90. PubMed ID: 16142931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly(amidoamine) dendrimers on lipid bilayers II: Effects of bilayer phase and dendrimer termination.
    Kelly CV; Leroueil PR; Orr BG; Banaszak Holl MM; Andricioaei I
    J Phys Chem B; 2008 Aug; 112(31):9346-53. PubMed ID: 18620451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct observation of lipid bilayer disruption by poly(amidoamine) dendrimers.
    Mecke A; Uppuluri S; Sassanella TM; Lee DK; Ramamoorthy A; Baker JR; Orr BG; Banaszak Holl MM
    Chem Phys Lipids; 2004 Nov; 132(1):3-14. PubMed ID: 15530443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(amidoamine) dendrimers on lipid bilayers I: Free energy and conformation of binding.
    Kelly CV; Leroueil PR; Nett EK; Wereszczynski JM; Baker JR; Orr BG; Banaszak Holl MM; Andricioaei I
    J Phys Chem B; 2008 Aug; 112(31):9337-45. PubMed ID: 18620450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of polycationic polymers with supported lipid bilayers and cells: nanoscale hole formation and enhanced membrane permeability.
    Hong S; Leroueil PR; Janus EK; Peters JL; Kober MM; Islam MT; Orr BG; Baker JR; Banaszak Holl MM
    Bioconjug Chem; 2006; 17(3):728-34. PubMed ID: 16704211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative study on the interaction of cell-penetrating polycationic polymers with lipid membranes.
    Takechi Y; Tanaka H; Kitayama H; Yoshii H; Tanaka M; Saito H
    Chem Phys Lipids; 2012 Jan; 165(1):51-8. PubMed ID: 22108318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sodium selective ion channel formation in living cell membranes by polyamidoamine dendrimer.
    Nyitrai G; Keszthelyi T; Bóta A; Simon A; Tőke O; Horváth G; Pál I; Kardos J; Héja L
    Biochim Biophys Acta; 2013 Aug; 1828(8):1873-80. PubMed ID: 23597947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dendrimer Interactions with Lipid Bilayer: Comparison of Force Field and Effect of Implicit vs Explicit Solvation.
    Kanchi S; Gosika M; Ayappa KG; Maiti PK
    J Chem Theory Comput; 2018 Jul; 14(7):3825-3839. PubMed ID: 29812928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Penetration of phospholipid membranes by poly-l-lysine depends on cholesterol and phospholipid composition.
    Gorman A; Hossain KR; Cornelius F; Clarke RJ
    Biochim Biophys Acta Biomembr; 2020 Feb; 1862(2):183128. PubMed ID: 31734310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unraveling dendrimer translocation across cell membrane mimics.
    Akesson A; Lind TK; Barker R; Hughes A; Cárdenas M
    Langmuir; 2012 Sep; 28(36):13025-33. PubMed ID: 22891930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics study of the structure and interparticle interactions of polyethylene glycol-conjugated PAMAM dendrimers.
    Lee H; Larson RG
    J Phys Chem B; 2009 Oct; 113(40):13202-7. PubMed ID: 19754139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PAMAM dendrimer interactions with supported lipid bilayers: a kinetic and mechanistic investigation.
    Parimi S; Barnes TJ; Prestidge CA
    Langmuir; 2008 Dec; 24(23):13532-9. PubMed ID: 18980350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly-l-lysines and poly-l-arginines induce leakage of negatively charged phospholipid vesicles and translocate through the lipid bilayer upon electrostatic binding to the membrane.
    Reuter M; Schwieger C; Meister A; Karlsson G; Blume A
    Biophys Chem; 2009 Sep; 144(1-2):27-37. PubMed ID: 19560854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.