These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 18767823)
1. Buried, covalently attached RGD peptide motifs in poly(methacrylic acid) brush layers: the effect of brush structure on cell adhesion. Navarro M; Benetti EM; Zapotoczny S; Planell JA; Vancso GJ Langmuir; 2008 Oct; 24(19):10996-1002. PubMed ID: 18767823 [TBL] [Abstract][Full Text] [Related]
2. Probing biofouling resistant polymer brush surfaces by atomic force microscopy based force spectroscopy. Schön P; Kutnyanszky E; ten Donkelaar B; Santonicola MG; Tecim T; Aldred N; Clare AS; Vancso GJ Colloids Surf B Biointerfaces; 2013 Feb; 102():923-30. PubMed ID: 23138001 [TBL] [Abstract][Full Text] [Related]
3. Reversible pH-controlled switching of poly(methacrylic acid) grafts for functional biointerfaces. Santonicola MG; de Groot GW; Memesa M; Meszyńska A; Vancso GJ Langmuir; 2010 Nov; 26(22):17513-9. PubMed ID: 20932041 [TBL] [Abstract][Full Text] [Related]
4. Glucose monitoring using a polymer brush modified polypropylene hollow fiber-based hydraulic flow sensor. Fortin N; Klok HA ACS Appl Mater Interfaces; 2015 Mar; 7(8):4631-40. PubMed ID: 25675859 [TBL] [Abstract][Full Text] [Related]
5. Antibacterial surfaces based on polymer brushes: investigation on the influence of brush properties on antimicrobial peptide immobilization and antimicrobial activity. Gao G; Yu K; Kindrachuk J; Brooks DE; Hancock RE; Kizhakkedathu JN Biomacromolecules; 2011 Oct; 12(10):3715-27. PubMed ID: 21902171 [TBL] [Abstract][Full Text] [Related]
6. The role of independently variable grafting density and layer thickness of polymer nanolayers on peptide adsorption and cell adhesion. Singh N; Cui X; Boland T; Husson SM Biomaterials; 2007 Feb; 28(5):763-71. PubMed ID: 17049595 [TBL] [Abstract][Full Text] [Related]
7. Initial Cell Adhesion onto a Phospholipid Polymer Brush Surface Modified with a Terminal Cell Adhesion Peptide. Inoue Y; Onodera Y; Ishihara K ACS Appl Mater Interfaces; 2018 May; 10(17):15250-15257. PubMed ID: 29652126 [TBL] [Abstract][Full Text] [Related]
8. Regulating the migration of smooth muscle cells by a vertically distributed poly(2-hydroxyethyl methacrylate) gradient on polymer brushes covalently immobilized with RGD peptides. Wu S; Du W; Duan Y; Zhang D; Liu Y; Wu B; Zou X; Ouyang H; Gao C Acta Biomater; 2018 Jul; 75():75-92. PubMed ID: 29857130 [TBL] [Abstract][Full Text] [Related]
9. Switching transport through nanopores with pH-responsive polymer brushes for controlled ion permeability. de Groot GW; Santonicola MG; Sugihara K; Zambelli T; Reimhult E; Vörös J; Vancso GJ ACS Appl Mater Interfaces; 2013 Feb; 5(4):1400-7. PubMed ID: 23360664 [TBL] [Abstract][Full Text] [Related]
10. Chitosan microsphere scaffold tethered with RGD-conjugated poly(methacrylic acid) brushes as effective carriers for the endothelial cells. Yang Z; Yuan S; Liang B; Liu Y; Choong C; Pehkonen SO Macromol Biosci; 2014 Sep; 14(9):1299-311. PubMed ID: 24895289 [TBL] [Abstract][Full Text] [Related]
11. Nanostructure of a poly(acrylic acid) brush and its transition in the amphiphilic diblock copolymer monolayer on the water surface. Matsuoka H; Suetomi Y; Kaewsaiha P; Matsumoto K Langmuir; 2009 Dec; 25(24):13752-62. PubMed ID: 19583229 [TBL] [Abstract][Full Text] [Related]
12. Fibroblast adhesion on ECM-derived peptide modified poly(2-hydroxyethyl methacrylate) brushes: ligand co-presentation and 3D-localization. Desseaux S; Klok HA Biomaterials; 2015 Mar; 44():24-35. PubMed ID: 25617123 [TBL] [Abstract][Full Text] [Related]
13. Hydrophilic chain length dependence of the ionic amphiphilic polymer monolayer structure at the air/water interface. Mouri E; Furuya Y; Matsumoto K; Matsuoka H Langmuir; 2004 Sep; 20(19):8062-7. PubMed ID: 15350073 [TBL] [Abstract][Full Text] [Related]