These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 18767875)
1. Successive and selective release of phosphorylated peptides captured by hydroxy acid-modified metal oxide chromatography. Kyono Y; Sugiyama N; Imami K; Tomita M; Ishihama Y J Proteome Res; 2008 Oct; 7(10):4585-93. PubMed ID: 18767875 [TBL] [Abstract][Full Text] [Related]
2. Extended Coverage of Singly and Multiply Phosphorylated Peptides from a Single Titanium Dioxide Microcolumn. Wakabayashi M; Kyono Y; Sugiyama N; Ishihama Y Anal Chem; 2015 Oct; 87(20):10213-21. PubMed ID: 26402220 [TBL] [Abstract][Full Text] [Related]
3. Hydroxyapatite affinity chromatography for the highly selective enrichment of mono- and multi-phosphorylated peptides in phosphoproteome analysis. Mamone G; Picariello G; Ferranti P; Addeo F Proteomics; 2010 Feb; 10(3):380-93. PubMed ID: 19953538 [TBL] [Abstract][Full Text] [Related]
4. Highly efficient enrichment of phosphopeptides by magnetic nanoparticles coated with zirconium phosphonate for phosphoproteome analysis. Wei J; Zhang Y; Wang J; Tan F; Liu J; Cai Y; Qian X Rapid Commun Mass Spectrom; 2008 Apr; 22(7):1069-80. PubMed ID: 18327884 [TBL] [Abstract][Full Text] [Related]
5. Highly specific enrichment of phosphopeptides by zirconium dioxide nanoparticles for phosphoproteome analysis. Zhou H; Tian R; Ye M; Xu S; Feng S; Pan C; Jiang X; Li X; Zou H Electrophoresis; 2007 Jul; 28(13):2201-15. PubMed ID: 17539039 [TBL] [Abstract][Full Text] [Related]
6. Enrichment of phosphopeptides using biphasic immobilized metal affinity-reversed phase microcolumns. Schilling M; Knapp DR J Proteome Res; 2008 Sep; 7(9):4164-72. PubMed ID: 18642943 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of the impact of some experimental procedures on different phosphopeptide enrichment techniques. Jensen SS; Larsen MR Rapid Commun Mass Spectrom; 2007; 21(22):3635-45. PubMed ID: 17939157 [TBL] [Abstract][Full Text] [Related]
8. Facile synthesis of titania-zirconia monodisperse microspheres and application for phosphopeptides enrichment. Yan J; Li X; Cheng S; Ke Y; Liang X Chem Commun (Camb); 2009 May; (20):2929-31. PubMed ID: 19436913 [TBL] [Abstract][Full Text] [Related]
9. Enrichment of phosphorylated proteins and peptides from complex mixtures using metal oxide/hydroxide affinity chromatography (MOAC). Wolschin F; Wienkoop S; Weckwerth W Proteomics; 2005 Nov; 5(17):4389-97. PubMed ID: 16222723 [TBL] [Abstract][Full Text] [Related]
10. Development of phosphopeptide enrichment techniques for phosphoproteome analysis. Han G; Ye M; Zou H Analyst; 2008 Sep; 133(9):1128-38. PubMed ID: 18709185 [TBL] [Abstract][Full Text] [Related]
11. Optimized IMAC-IMAC protocol for phosphopeptide recovery from complex biological samples. Ye J; Zhang X; Young C; Zhao X; Hao Q; Cheng L; Jensen ON J Proteome Res; 2010 Jul; 9(7):3561-73. PubMed ID: 20450229 [TBL] [Abstract][Full Text] [Related]
12. Highly robust, automated, and sensitive online TiO2-based phosphoproteomics applied to study endogenous phosphorylation in Drosophila melanogaster. Pinkse MW; Mohammed S; Gouw JW; van Breukelen B; Vos HR; Heck AJ J Proteome Res; 2008 Feb; 7(2):687-97. PubMed ID: 18034456 [TBL] [Abstract][Full Text] [Related]
14. Specific phosphopeptide enrichment with immobilized titanium ion affinity chromatography adsorbent for phosphoproteome analysis. Zhou H; Ye M; Dong J; Han G; Jiang X; Wu R; Zou H J Proteome Res; 2008 Sep; 7(9):3957-67. PubMed ID: 18630941 [TBL] [Abstract][Full Text] [Related]
15. Probing the phosphoproteome of HeLa cells using nanocast metal oxide microspheres for phosphopeptide enrichment. Leitner A; Sturm M; Hudecz O; Mazanek M; Smått JH; Lindén M; Lindner W; Mechtler K Anal Chem; 2010 Apr; 82(7):2726-33. PubMed ID: 20201521 [TBL] [Abstract][Full Text] [Related]
16. Novel Fe3O4@TiO2 core-shell microspheres for selective enrichment of phosphopeptides in phosphoproteome analysis. Li Y; Xu X; Qi D; Deng C; Yang P; Zhang X J Proteome Res; 2008 Jun; 7(6):2526-38. PubMed ID: 18473453 [TBL] [Abstract][Full Text] [Related]
17. Development of a titanium dioxide nanoparticle pipette-tip for the selective enrichment of phosphorylated peptides. Hsieh HC; Sheu C; Shi FK; Li DT J Chromatogr A; 2007 Sep; 1165(1-2):128-35. PubMed ID: 17714720 [TBL] [Abstract][Full Text] [Related]
18. Phosphopeptide enrichment by aliphatic hydroxy acid-modified metal oxide chromatography for nano-LC-MS/MS in proteomics applications. Sugiyama N; Masuda T; Shinoda K; Nakamura A; Tomita M; Ishihama Y Mol Cell Proteomics; 2007 Jun; 6(6):1103-9. PubMed ID: 17322306 [TBL] [Abstract][Full Text] [Related]
19. Chemical dephosphorylation for identification of multiply phosphorylated peptides and phosphorylation site determination. Kyono Y; Sugiyama N; Tomita M; Ishihama Y Rapid Commun Mass Spectrom; 2010 Aug; 24(15):2277-82. PubMed ID: 20623713 [TBL] [Abstract][Full Text] [Related]
20. Selective zirconium dioxide-based enrichment of phosphorylated peptides for mass spectrometric analysis. Kweon HK; Håkansson K Anal Chem; 2006 Mar; 78(6):1743-9. PubMed ID: 16536406 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]