These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 18767890)

  • 41. Electronic, thermal and mechanical properties of carbon nanotubes.
    Dresselhaus MS; Dresselhaus G; Charlier JC; Hernández E
    Philos Trans A Math Phys Eng Sci; 2004 Oct; 362(1823):2065-98. PubMed ID: 15370472
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fabrication of hydrogel microstructures using polymerization controlled by microcontact printing (PCmicroCP).
    Biswal D; Chirra HD; Hilt JZ
    Biomed Microdevices; 2008 Apr; 10(2):213-9. PubMed ID: 17876708
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nano-fibrous poly(L-lactic acid) scaffolds with interconnected spherical macropores.
    Chen VJ; Ma PX
    Biomaterials; 2004 May; 25(11):2065-73. PubMed ID: 14741621
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electrospun hyaluronate-collagen nanofibrous matrix and the effects of varying the concentration of hyaluronate on the characteristics of foreskin fibroblast cells.
    Hsu FY; Hung YS; Liou HM; Shen CH
    Acta Biomater; 2010 Jun; 6(6):2140-7. PubMed ID: 20035907
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Graphene-based macroscopic assemblies and architectures: an emerging material system.
    Cong HP; Chen JF; Yu SH
    Chem Soc Rev; 2014 Nov; 43(21):7295-325. PubMed ID: 25065466
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reinventing micro-and nanomoulding.
    Whiteside B; Manser P
    Med Device Technol; 2007; 18(2):18-20, 22. PubMed ID: 17494497
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electrospun matrices made of poly(alpha-hydroxy acids) for medical use.
    Piskin E; Bölgen N; Egri S; Isoglu IA
    Nanomedicine (Lond); 2007 Aug; 2(4):441-57. PubMed ID: 17716131
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biodegradable nanomats produced by electrospinning: expanding multifunctionality and potential for tissue engineering.
    Ashammakhi N; Ndreu A; Piras AM; Nikkola L; Sindelar T; Ylikauppila H; Harlin A; Gomes ME; Neves NM; Chiellini E; Chiellini F; Hasirci V; Redl H; Reis RL
    J Nanosci Nanotechnol; 2007 Mar; 7(3):862-82. PubMed ID: 17450849
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electrohydrodynamic atomization: a versatile process for preparing materials for biomedical applications.
    Wu Y; Clark RL
    J Biomater Sci Polym Ed; 2008; 19(5):573-601. PubMed ID: 18419939
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fabrication of gradient mesostructures by Langmuir-Blodgett rotating transfer.
    Chen X; Hirtz M; Fuchs H; Chi L
    Langmuir; 2007 Feb; 23(5):2280-3. PubMed ID: 17274637
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering.
    Li WJ; Mauck RL; Cooper JA; Yuan X; Tuan RS
    J Biomech; 2007; 40(8):1686-1693. PubMed ID: 17056048
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Electrospun PCL nanofibers with anisotropic mechanical properties as a biomedical scaffold.
    Kim GH
    Biomed Mater; 2008 Jun; 3(2):025010. PubMed ID: 18458365
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Applications of carbon nanotubes in the twenty-first century.
    Endo M; Hayashi T; Kim YA; Terrones M; Dresselhaus MS
    Philos Trans A Math Phys Eng Sci; 2004 Oct; 362(1823):2223-38. PubMed ID: 15370479
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bamboo and herringbone shaped carbon nanotubes and carbon nanofibres synthesized in direct current-plasma enhanced chemical vapour deposition.
    Zhang L; Chen L; Wells T; El-Gomati M
    J Nanosci Nanotechnol; 2009 Jul; 9(7):4502-6. PubMed ID: 19916481
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency.
    Chang C; Tran VH; Wang J; Fuh YK; Lin L
    Nano Lett; 2010 Feb; 10(2):726-31. PubMed ID: 20099876
    [TBL] [Abstract][Full Text] [Related]  

  • 56. AC electrospray biomaterials synthesis.
    Yeo LY; Gagnon Z; Chang HC
    Biomaterials; 2005 Nov; 26(31):6122-8. PubMed ID: 15893816
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Surface modification of biodegradable electrospun nanofiber scaffolds and their interaction with fibroblasts.
    Park K; Ju YM; Son JS; Ahn KD; Han DK
    J Biomater Sci Polym Ed; 2007; 18(4):369-82. PubMed ID: 17540114
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synthesis of carbon nanotubes.
    Awasthi K; Srivastava A; Srivastava ON
    J Nanosci Nanotechnol; 2005 Oct; 5(10):1616-36. PubMed ID: 16245519
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Self-assembly of hyperbranched polymers and its biomedical applications.
    Zhou Y; Huang W; Liu J; Zhu X; Yan D
    Adv Mater; 2010 Nov; 22(41):4567-90. PubMed ID: 20853374
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hyperbranched polyglycerol electrospun nanofibers for wound dressing applications.
    Vargas EA; do Vale Baracho NC; de Brito J; de Queiroz AA
    Acta Biomater; 2010 Mar; 6(3):1069-78. PubMed ID: 19788943
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.