These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 18767890)

  • 61. Hyperbranched polyglycerol electrospun nanofibers for wound dressing applications.
    Vargas EA; do Vale Baracho NC; de Brito J; de Queiroz AA
    Acta Biomater; 2010 Mar; 6(3):1069-78. PubMed ID: 19788943
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Electrospinning as a powerful technique for biomedical applications: a critically selected survey.
    Villarreal-Gómez LJ; Cornejo-Bravo JM; Vera-Graziano R; Grande D
    J Biomater Sci Polym Ed; 2016; 27(2):157-76. PubMed ID: 26540235
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Carbon nanotubes by electrospinning with a polyelectrolyte and vapor deposition polymerization.
    McCann JT; Lim B; Ostermann R; Rycenga M; Marquez M; Xia Y
    Nano Lett; 2007 Aug; 7(8):2470-4. PubMed ID: 17629350
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Laser emission from electrospun polymer nanofibers.
    Camposeo A; Di Benedetto F; Stabile R; Neves AA; Cingolani R; Pisignano D
    Small; 2009 Mar; 5(5):562-6. PubMed ID: 19189330
    [No Abstract]   [Full Text] [Related]  

  • 65. Highly organized two- and three-dimensional single-walled carbon nanotube-polymer hybrid architectures.
    Li B; Hahm MG; Kim YL; Jung HY; Kar S; Jung YJ
    ACS Nano; 2011 Jun; 5(6):4826-34. PubMed ID: 21609004
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Functionalization of electrospun TiO2 nanofibers with Pt nanoparticles and nanowires for catalytic applications.
    Formo E; Lee E; Campbell D; Xia Y
    Nano Lett; 2008 Feb; 8(2):668-72. PubMed ID: 18205427
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Drug loading and release from electrospun biodegradable nanofibers.
    Goonoo N; Bhaw-Luximon A; Jhurry D
    J Biomed Nanotechnol; 2014 Sep; 10(9):2173-99. PubMed ID: 25992453
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Novel nanoscale architectures: coated nanotubes and other nanowires.
    Whitby RL; Hsu WK; Zhu YQ; Kroto HW; Walton DR
    Philos Trans A Math Phys Eng Sci; 2004 Oct; 362(1823):2127-42. PubMed ID: 15370474
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Structural transformation by electrodeposition on patterned substrates (STEPS): a new versatile nanofabrication method.
    Kim P; Epstein AK; Khan M; Zarzar LD; Lipomi DJ; Whitesides GM; Aizenberg J
    Nano Lett; 2012 Feb; 12(2):527-33. PubMed ID: 21438614
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Harnessing supramolecular peptide nanotechnology in biomedical applications.
    Chan KH; Lee WH; Zhuo S; Ni M
    Int J Nanomedicine; 2017; 12():1171-1182. PubMed ID: 28223805
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The controllable syntheses and electrochemical study of 1-dimensional nanowires, 2-dimensional nanoplatelets, and 3-dimensional nanotowers of MnO2.
    Yan DW; Wang CR
    J Nanosci Nanotechnol; 2007 Jul; 7(7):2487-93. PubMed ID: 17663269
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Shape and complexity at the atomic scale: the case of layered nanomaterials.
    Terrones H; Terrones M; López-Urías F; Rodríguez-Manzo JA; Mackay AL
    Philos Trans A Math Phys Eng Sci; 2004 Oct; 362(1823):2039-63. PubMed ID: 15370471
    [TBL] [Abstract][Full Text] [Related]  

  • 73. [Studies on the morphology and structure of electrospun poly (3-hydroxybutyrate)/soya protein isolates fibers].
    Li M; Li Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Jun; 24(3):607-11. PubMed ID: 17713272
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Injectable in situ cross-linkable nanocomposites of biodegradable polymers and carbon nanostructures for bone tissue engineering.
    Sitharaman B; Shi X; Tran LA; Spicer PP; Rusakova I; Wilson LJ; Mikos AG
    J Biomater Sci Polym Ed; 2007; 18(6):655-71. PubMed ID: 17623549
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Fluorescent electrospun nanofibers embedding dye-loaded zeolite crystals.
    Cucchi I; Spano F; Giovanella U; Catellani M; Varesano A; Calzaferri G; Botta C
    Small; 2007 Feb; 3(2):305-9. PubMed ID: 17191288
    [No Abstract]   [Full Text] [Related]  

  • 76. Fabrication of three-dimensional nano, micro and micro/nano scaffolds of porous poly(lactic acid) by electrospinning and comparison of cell infiltration by Z-stacking/three-dimensional projection technique.
    Shalumon KT; Chennazhi KP; Tamura H; Kawahara K; Nair SV; Jayakumar R
    IET Nanobiotechnol; 2012 Mar; 6(1):16-25. PubMed ID: 22423866
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Near-field electrospinning.
    Sun D; Chang C; Li S; Lin L
    Nano Lett; 2006 Apr; 6(4):839-42. PubMed ID: 16608294
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Scanning tunnelling microscopy of carbon nanotubes.
    Meunier V; Lambin P
    Philos Trans A Math Phys Eng Sci; 2004 Oct; 362(1823):2187-203. PubMed ID: 15370477
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Carbon nanomaterial-based electrochemical biosensors: an overview.
    Wang Z; Dai Z
    Nanoscale; 2015 Apr; 7(15):6420-31. PubMed ID: 25805626
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Frequency dependence of the dielectrophoretic separation of single-walled carbon nanotubes.
    Hennrich F; Krupke R; Kappes MM; Löhneysen HV
    J Nanosci Nanotechnol; 2005 Jul; 5(7):1166-71. PubMed ID: 16108444
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.