BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 18768232)

  • 1. Kinematic analysis of goal-directed aims made against early and late perturbations: an investigation of the relative influence of two online control processes.
    Grierson LE; Elliott D
    Hum Mov Sci; 2008 Dec; 27(6):839-56. PubMed ID: 18768232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Goal-directed aiming and the relative contribution of two online control processes.
    Grierson LE; Elliott D
    Am J Psychol; 2009; 122(3):309-24. PubMed ID: 19827701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impact of real and illusory perturbations on the early trajectory adjustments of goal-directed movements.
    Grierson LE; Lyons J; Elliott D
    J Mot Behav; 2011; 43(5):383-91. PubMed ID: 21861628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Allocentric visual cues influence online limb adjustments.
    Heath M; Neely K; Binsted G
    Motor Control; 2007 Jan; 11(1):54-70. PubMed ID: 17392567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Target dimension affects 1/f noise in aiming.
    Valdez AB; Amazeen EL
    Nonlinear Dynamics Psychol Life Sci; 2009 Oct; 13(4):369-92. PubMed ID: 19781136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time manipulation of visual displacement during manual aiming.
    Hansen S; Tremblay L; Elliott D
    Hum Mov Sci; 2008 Feb; 27(1):1-11. PubMed ID: 18179838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inferring online and offline processing of visual feedback in target-directed movements from kinematic data.
    Khan MA; Franks IM; Elliott D; Lawrence GP; Chua R; Bernier PM; Hansen S; Weeks DJ
    Neurosci Biobehav Rev; 2006; 30(8):1106-21. PubMed ID: 16839604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repetitive pointing to remembered proprioceptive targets improves 3D hand positioning accuracy.
    Barden JM; Balyk R; James Raso V; Moreau M; Bagnall K
    Hum Mov Sci; 2005 Apr; 24(2):184-205. PubMed ID: 15936836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bi-phasic hitting with constraints on impact velocity and temporal precision.
    Caljouw SR; van der Kamp J; Savelsbergh GJ
    Hum Mov Sci; 2005 Apr; 24(2):206-17. PubMed ID: 15964647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calibration and alignment are separable: evidence from prism adaptation.
    Redding GM; Wallace B
    J Mot Behav; 2001 Dec; 33(4):401-12. PubMed ID: 11734414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-linear gaining in precision aiming: making Fitts' task a bit easier.
    Fernandez L; Bootsma RJ
    Acta Psychol (Amst); 2008 Oct; 129(2):217-27. PubMed ID: 18632086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Body-goal variability mapping in an aiming task.
    Cusumano JP; Cesari P
    Biol Cybern; 2006 May; 94(5):367-79. PubMed ID: 16501988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stepping to recover balance in complex environments: is online visual control of the foot motion necessary or sufficient?
    Scovil CY; Zettel JL; Maki BE
    Neurosci Lett; 2008 Nov; 445(1):108-12. PubMed ID: 18771705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The line copy task for kinesthesia and internal movement representation: application in children.
    Smits-Engelsman B; Duysens J
    Hum Mov Sci; 2008 Oct; 27(5):682-94. PubMed ID: 18513816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The formation of trajectories during goal-oriented locomotion in humans. I. A stereotyped behaviour.
    Hicheur H; Pham QC; Arechavaleta G; Laumond JP; Berthoz A
    Eur J Neurosci; 2007 Oct; 26(8):2376-90. PubMed ID: 17953625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Information entropy analysis of discrete aiming movements.
    Lai SC; Mayer-Kress G; Sosnoff JJ; Newell KM
    Acta Psychol (Amst); 2005 Jul; 119(3):283-304. PubMed ID: 15939027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linear and logarithmic speed-accuracy trade-offs in reciprocal aiming result from task-specific parameterization of an invariant underlying dynamics.
    Bongers RM; Fernandez L; Bootsma RJ
    J Exp Psychol Hum Percept Perform; 2009 Oct; 35(5):1443-57. PubMed ID: 19803648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The BUMP model of response planning: variable horizon predictive control accounts for the speed-accuracy tradeoffs and velocity profiles of aimed movement.
    Bye RT; Neilson PD
    Hum Mov Sci; 2008 Oct; 27(5):771-98. PubMed ID: 18774616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual context and the control of movements through video display.
    Ferrel C; Orliaguet JP; Leifflen D; Bard C; Fleury M
    Hum Factors; 2001; 43(1):56-65. PubMed ID: 11474764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal integration of gravity in trajectory planning of vertical pointing movements.
    Crevecoeur F; Thonnard JL; Lefèvre P
    J Neurophysiol; 2009 Aug; 102(2):786-96. PubMed ID: 19458149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.