BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 18768344)

  • 21. Use of the ventricular propagated excitation model in the magnetocardiographic inverse problem for reconstruction of electrophysiological properties.
    Ohyu S; Okamoto Y; Kuriki S
    IEEE Trans Biomed Eng; 2002 Jun; 49(6):509-19. PubMed ID: 12046695
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Personalization of a cardiac electrophysiology model using optical mapping and MRI for prediction of changes with pacing.
    Relan J; Pop M; Delingette H; Wright GA; Ayache N; Sermesant M
    IEEE Trans Biomed Eng; 2011 Dec; 58(12):3339-49. PubMed ID: 21257368
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An electromechanical model of the heart for image analysis and simulation.
    Sermesant M; Delingette H; Ayache N
    IEEE Trans Med Imaging; 2006 May; 25(5):612-25. PubMed ID: 16689265
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of cardiac motion on body surface electrocardiographic potentials: an MRI-based simulation study.
    Wei Q; Liu F; Appleton B; Xia L; Liu N; Wilson S; Riley R; Strugnel W; Slaughter R; Denman R; Crozier S
    Phys Med Biol; 2006 Jul; 51(14):3405-18. PubMed ID: 16825739
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sensitivity- and effort-gain analysis: multilead ECG electrode array selection for activation time imaging.
    Hintermüller C; Seger M; Pfeifer B; Fischer G; Modre R; Tilg B
    IEEE Trans Biomed Eng; 2006 Oct; 53(10):2055-66. PubMed ID: 17019870
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative prediction of body surface potentials from myocardial action potentials using a summed dipole model.
    Babbs CF
    Cardiovasc Eng; 2009 Jun; 9(2):59-71. PubMed ID: 19543975
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The transfer matrix for epicardial potential in a piece-wise homogeneous thorax model: the boundary element formulation.
    Stenroos M
    Phys Med Biol; 2009 Sep; 54(18):5443-55. PubMed ID: 19700818
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three-dimensional myocardial activation imaging in a rabbit model.
    Liu C; Zhang X; Liu Z; Pogwizd SM; He B
    IEEE Trans Biomed Eng; 2006 Sep; 53(9):1813-20. PubMed ID: 16941837
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cardiac tissue geometry as a determinant of unidirectional conduction block: assessment of microscopic excitation spread by optical mapping in patterned cell cultures and in a computer model.
    Fast VG; Kléber AG
    Cardiovasc Res; 1995 May; 29(5):697-707. PubMed ID: 7606760
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Localization of the site of origin of reentrant arrhythmia from body surface potential maps: a model study.
    Liu C; Li G; He B
    Phys Med Biol; 2005 Apr; 50(7):1421-32. PubMed ID: 15798333
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optical imaging of the heart.
    Efimov IR; Nikolski VP; Salama G
    Circ Res; 2004 Jul; 95(1):21-33. PubMed ID: 15242982
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reconstructing subsurface electrical wave orientation from cardiac epi-fluorescence recordings: Monte Carlo versus diffusion approximation.
    Hyatt CJ; Zemlin CW; Smith RM; Matiukas A; Pertsov AM; Bernus O
    Opt Express; 2008 Sep; 16(18):13758-72. PubMed ID: 18772987
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Individualized model of torso surface for the inverse problem of electrocardiology.
    Lenkova J; Svehlikova J; Tysler M
    J Electrocardiol; 2012; 45(3):231-6. PubMed ID: 22402335
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A time-dependent adaptive remeshing for electrical waves of the heart.
    Belhamadia Y
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):443-52. PubMed ID: 18269979
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Some imaging parameters of the oblique dipole layer cardiac generator derivable from body surface electrical potentials.
    Greensite F
    IEEE Trans Biomed Eng; 1992 Feb; 39(2):159-64. PubMed ID: 1612619
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optical action potential upstroke morphology reveals near-surface transmural propagation direction.
    Hyatt CJ; Mironov SF; Vetter FJ; Zemlin CW; Pertsov AM
    Circ Res; 2005 Aug; 97(3):277-84. PubMed ID: 15994436
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Measurements of electrophysiological effects of components of acute ischemia in Langendorff-perfused rat hearts using voltage-sensitive dye mapping.
    Nygren A; Baczkó I; Giles WR
    J Cardiovasc Electrophysiol; 2006 May; 17 Suppl 1():S113-S123. PubMed ID: 16686665
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Macroscopic optical mapping of excitation in cardiac cell networks with ultra-high spatiotemporal resolution.
    Entcheva E; Bien H
    Prog Biophys Mol Biol; 2006 Oct; 92(2):232-57. PubMed ID: 16330086
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nonlinear organization of electrocardiogram and optical signals during ventricular fibrillation.
    Schumacher A
    J Electrocardiol; 2006 Oct; 39(4 Suppl):S146-50. PubMed ID: 16934828
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simulation of the QRS complex using papillary muscle positions as the site of early activation in human subjects.
    Hakacova N; Bass GD; Olson CW; Robinson AM; Selvester RH
    J Electrocardiol; 2009; 42(2):158-64. PubMed ID: 19167010
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.