BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 18768453)

  • 1. How do different cigarette design features influence the standard tar yields of popular cigarette brands sold in different countries?
    O'Connor RJ; Hammond D; McNeill A; King B; Kozlowski LT; Giovino GA; Cummings KM
    Tob Control; 2008 Sep; 17 Suppl 1():i1-5. PubMed ID: 18768453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ignoring puff counts: another shortcoming of the Federal Trade Commission cigarette testing programme.
    Kozlowski LT; Whetzel CA; Stellman SD; O'Connor RJ
    Tob Control; 2008 Sep; 17 Suppl 1():i6-9. PubMed ID: 18768461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mainstream smoke constituent yields and predicting relationships from a worldwide market sample of cigarette brands: ISO smoking conditions.
    Counts ME; Hsu FS; Laffoon SW; Dwyer RW; Cox RH
    Regul Toxicol Pharmacol; 2004 Apr; 39(2):111-34. PubMed ID: 15041144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Filter ventilation levels in selected U.S. cigarettes, 1997.
    Centers for Disease Control and Prevention (CDC)
    MMWR Morb Mortal Wkly Rep; 1997 Nov; 46(44):1043-7. PubMed ID: 9370225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of the New York State cigarette fire safety standard on ignition propensity, smoke constituents, and the consumer market.
    Connolly GN; Alpert HR; Rees V; Carpenter C; Wayne GF; Vallone D; Koh H
    Tob Control; 2005 Oct; 14(5):321-7. PubMed ID: 16183983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating tar and nicotine exposure: human smoking versus machine generated smoke yields.
    St Charles FK; Kabbani AA; Borgerding MF
    Regul Toxicol Pharmacol; 2010 Feb; 56(1):100-10. PubMed ID: 19723554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of mouth level exposure to smoke constituents of cigarettes with different tar levels using filter analysis.
    Hyodo T; Minagawa K; Inoue T; Fujimoto J; Minami N; Bito R; Mikita A
    Regul Toxicol Pharmacol; 2013 Dec; 67(3):486-98. PubMed ID: 24113618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Digital image analysis of cigarette filter stains as an indicator of compensatory smoking.
    Strasser AA; O'Connor RJ; Mooney ME; Wileyto EP
    Cancer Epidemiol Biomarkers Prev; 2006 Dec; 15(12):2565-9. PubMed ID: 17164388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of nicotine and tar yields from human-smoked cigarettes before and after the implementation of the cigarette ignition propensity regulations in Canada.
    Côté F; Létourneau C; Mullard G; Voisine R
    Regul Toxicol Pharmacol; 2011 Dec; 61(3 Suppl):S51-9. PubMed ID: 20303374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectrofluorometric method for measuring tobacco smoke particulate matter on cigarette filters and Cambridge pads.
    Paszkiewicz GM; Pauly JL
    Tob Control; 2008 Sep; 17 Suppl 1():i53-8. PubMed ID: 18768460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of major carcinogenic tobacco-specific N-nitrosamines in Thai cigarettes.
    Brunnemann KD; Mitacek EJ; Liu Y; Limsila T; Suttajit M
    Cancer Detect Prev; 1996; 20(2):114-21. PubMed ID: 8706036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical design analysis and mainstream smoke constituent yields of the new potential reduced exposure product, Marlboro UltraSmooth.
    Rees VW; Wayne GF; Thomas BF; Connolly GN
    Nicotine Tob Res; 2007 Nov; 9(11):1197-206. PubMed ID: 17978995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Smoke composition and predicting relationships for international commercial cigarettes smoked with three machine-smoking conditions.
    Counts ME; Morton MJ; Laffoon SW; Cox RH; Lipowicz PJ
    Regul Toxicol Pharmacol; 2005 Apr; 41(3):185-227. PubMed ID: 15748796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tobacco smoke: unraveling a controversial subject.
    Thielen A; Klus H; Müller L
    Exp Toxicol Pathol; 2008 Jun; 60(2-3):141-56. PubMed ID: 18485684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dependence of tar, nicotine and carbon monoxide yields on physical parameters: implications for exposure, emissions control and monitoring.
    Stephens WE
    Tob Control; 2007 Jun; 16(3):170-6. PubMed ID: 17565136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of functional relationships for predicting mainstream smoke constituent machine yields for conventional cigarettes from the Japanese market.
    Hyodo T; Maruta Y; Itaya H; Mikita A; Kodera T; Meger M
    Regul Toxicol Pharmacol; 2007 Jul; 48(2):194-224. PubMed ID: 17502123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mainstream smoke chemistry analysis of samples from the 2009 US cigarette market.
    Bodnar JA; Morgan WT; Murphy PA; Ogden MW
    Regul Toxicol Pharmacol; 2012 Oct; 64(1):35-42. PubMed ID: 22683394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The linear relationship between cigarette tar and nicotine yields: regulatory implications for smoke constituent ratios.
    St Charles FK; Cook CJ; Clayton PM
    Regul Toxicol Pharmacol; 2011 Feb; 59(1):143-8. PubMed ID: 21216263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The "low-tar" strategy and the changing construction of Australian cigarettes.
    King B; Borland R
    Nicotine Tob Res; 2004 Feb; 6(1):85-94. PubMed ID: 14982692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cigarette Filter Ventilation and Smoking Protocol Influence Aldehyde Smoke Yields.
    Pauwels CGGM; Klerx WNM; Pennings JLA; Boots AW; van Schooten FJ; Opperhuizen A; Talhout R
    Chem Res Toxicol; 2018 Jun; 31(6):462-471. PubMed ID: 29727173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.