These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 18768639)

  • 1. Sensory regulation of network components underlying ciliary locomotion in Hermissenda.
    Crow T; Tian LM
    J Neurophysiol; 2008 Nov; 100(5):2496-506. PubMed ID: 18768639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Network interneurons underlying ciliary locomotion in Hermissenda.
    Crow T; Jin NG; Tian LM
    J Neurophysiol; 2013 Feb; 109(3):640-8. PubMed ID: 23155173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polysensory interneuronal projections to foot contractile pedal neurons in Hermissenda.
    Crow T; Tian LM
    J Neurophysiol; 2009 Feb; 101(2):824-33. PubMed ID: 19073803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interneuronal projections to identified cilia-activating pedal neurons in Hermissenda.
    Crow T; Tian LM
    J Neurophysiol; 2003 May; 89(5):2420-9. PubMed ID: 12740402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural correlates of Pavlovian conditioning in components of the neural network supporting ciliary locomotion in Hermissenda.
    Crow T; Tian LM
    Learn Mem; 2003; 10(3):209-16. PubMed ID: 12773585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statocyst hair cell activation of identified interneurons and foot contraction motor neurons in Hermissenda.
    Crow T; Tian LM
    J Neurophysiol; 2004 Jun; 91(6):2874-83. PubMed ID: 14985407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Serotonin-immunoreactive CPT interneurons in Hermissenda: identification of sensory input and motor projections.
    Tian LM; Kawai R; Crow T
    J Neurophysiol; 2006 Jul; 96(1):327-35. PubMed ID: 16641389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphological characteristics and central projections of two types of interneurons in the visual pathway of Hermissenda.
    Crow T; Tian LM
    J Neurophysiol; 2002 Jan; 87(1):322-32. PubMed ID: 11784753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly dissimilar behaviors mediated by a multifunctional network in the marine mollusk Tritonia diomedea.
    Popescu IR; Frost WN
    J Neurosci; 2002 Mar; 22(5):1985-93. PubMed ID: 11880529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 5-HT and GABA modulate intrinsic excitability of type I interneurons in Hermissenda.
    Jin NG; Tian LM; Crow T
    J Neurophysiol; 2009 Nov; 102(5):2825-33. PubMed ID: 19710377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of locomotion in marine mollusc Clione limacina. II. Rhythmic neurons of pedal ganglia.
    Arshavsky YuI ; Beloozerova IN; Orlovsky GN; Panchin YuV ; Pavlova GA
    Exp Brain Res; 1985; 58(2):263-72. PubMed ID: 2987013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A hemicord locomotor network of excitatory interneurons: a simulation study.
    Kozlov AK; Lansner A; Grillner S; Kotaleski JH
    Biol Cybern; 2007 Feb; 96(2):229-43. PubMed ID: 17180687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monosynaptic connections between identified A and B photoreceptors and interneurons in Hermissenda: evidence for labeled-lines.
    Crow T; Tian LM
    J Neurophysiol; 2000 Jul; 84(1):367-75. PubMed ID: 10899211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of locomotion in marine mollusc Clione limacina. III. On the origin of locomotory rhythm.
    Arshavsky YuI ; Beloozerova IN; Orlovsky GN; Panchin YuV ; Pavlova GA
    Exp Brain Res; 1985; 58(2):273-84. PubMed ID: 2581799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of noise-induced improvement in light-intensity encoding in Hermissenda photoreceptor network.
    Butson CR; Clark GA
    J Neurophysiol; 2008 Jan; 99(1):155-65. PubMed ID: 18003872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synaptic and nonsynaptic contributions to giant ipsps and ectopic spikes induced by 4-aminopyridine in the hippocampus in vitro.
    Traub RD; Bibbig R; Piechotta A; Draguhn R; Schmitz D
    J Neurophysiol; 2001 Mar; 85(3):1246-56. PubMed ID: 11247993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relative spike timing in stochastic oscillator networks of the Hermissenda eye.
    Nesse WH; Clark GA
    Biol Cybern; 2010 May; 102(5):389-412. PubMed ID: 20237937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computer simulations of NMDA and non-NMDA receptor-mediated synaptic drive: sensory and supraspinal modulation of neurons and small networks.
    Tråvén HG; Brodin L; Lansner A; Ekeberg O; Wallén P; Grillner S
    J Neurophysiol; 1993 Aug; 70(2):695-709. PubMed ID: 8105036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activity-dependent feedforward inhibition modulates synaptic transmission in a spinal locomotor network.
    Parker D
    J Neurosci; 2003 Dec; 23(35):11085-93. PubMed ID: 14657166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synchronous bursting in a subset of interneurons inhibitory to the goldfish Mauthner cell: synaptic mediation and plasticity.
    Charpier S; Behrends JC; Chang YT; Sur C; Korn H
    J Neurophysiol; 1994 Aug; 72(2):531-41. PubMed ID: 7983517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.