These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 18768804)

  • 1. Elucidation of phenotypic adaptations: Molecular analyses of dim-light vision proteins in vertebrates.
    Yokoyama S; Tada T; Zhang H; Britt L
    Proc Natl Acad Sci U S A; 2008 Sep; 105(36):13480-5. PubMed ID: 18768804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular analysis of the evolutionary significance of ultraviolet vision in vertebrates.
    Shi Y; Yokoyama S
    Proc Natl Acad Sci U S A; 2003 Jul; 100(14):8308-13. PubMed ID: 12824471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectral Tuning of Killer Whale (Orcinus orca) Rhodopsin: Evidence for Positive Selection and Functional Adaptation in a Cetacean Visual Pigment.
    Dungan SZ; Kosyakov A; Chang BS
    Mol Biol Evol; 2016 Feb; 33(2):323-36. PubMed ID: 26486871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recreated Ancestral Opsin Associated with Marine to Freshwater Croaker Invasion Reveals Kinetic and Spectral Adaptation.
    Van Nynatten A; Castiglione GM; de A Gutierrez E; Lovejoy NR; Chang BSW
    Mol Biol Evol; 2021 May; 38(5):2076-2087. PubMed ID: 33481002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Convergent Phenotypic Evolution of Rhodopsin for Dim-Light Sensing across Deep-Diving Vertebrates.
    Xia Y; Cui Y; Wang A; Liu F; Chi H; Potter JHT; Williamson J; Chen X; Rossiter SJ; Liu Y
    Mol Biol Evol; 2021 Dec; 38(12):5726-5734. PubMed ID: 34463769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vertebrate rhodopsin adaptation to dim light via rapid meta-II intermediate formation.
    Sugawara T; Imai H; Nikaido M; Imamoto Y; Okada N
    Mol Biol Evol; 2010 Mar; 27(3):506-19. PubMed ID: 19858068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The molecular basis of adaptive evolution of squirrelfish rhodopsins.
    Yokoyama S; Takenaka N
    Mol Biol Evol; 2004 Nov; 21(11):2071-8. PubMed ID: 15269277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerated Evolution and Functional Divergence of the Dim Light Visual Pigment Accompanies Cichlid Colonization of Central America.
    Hauser FE; Ilves KL; Schott RK; Castiglione GM; López-Fernández H; Chang BSW
    Mol Biol Evol; 2017 Oct; 34(10):2650-2664. PubMed ID: 28957507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phylogenetic analysis and experimental approaches to study color vision in vertebrates.
    Yokoyama S
    Methods Enzymol; 2000; 315():312-25. PubMed ID: 10736710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional characterization of the rod visual pigment of the echidna (Tachyglossus aculeatus), a basal mammal.
    Bickelmann C; Morrow JM; Müller J; Chang BS
    Vis Neurosci; 2012 Sep; 29(4-5):211-7. PubMed ID: 22874131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic biology of phenotypic adaptation in vertebrates: the next frontier.
    Yokoyama S
    Mol Biol Evol; 2013 Jul; 30(7):1495-9. PubMed ID: 23603936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative study of rhodopsin function in the great bowerbird (Ptilonorhynchus nuchalis): Spectral tuning and light-activated kinetics.
    van Hazel I; Dungan SZ; Hauser FE; Morrow JM; Endler JA; Chang BS
    Protein Sci; 2016 Jul; 25(7):1308-18. PubMed ID: 26889650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple method for studying the molecular mechanisms of ultraviolet and violet reception in vertebrates.
    Yokoyama S; Tada T; Liu Y; Faggionato D; Altun A
    BMC Evol Biol; 2016 Mar; 16():64. PubMed ID: 27001075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary dynamics of rhodopsin type 2 opsins in vertebrates.
    Yokoyama S; Tada T
    Mol Biol Evol; 2010 Jan; 27(1):133-41. PubMed ID: 19759234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Color vision of the coelacanth (Latimeria chalumnae) and adaptive evolution of rhodopsin (RH1) and rhodopsin-like (RH2) pigments.
    Yokoyama S
    J Hered; 2000; 91(3):215-20. PubMed ID: 10833047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhodopsin population genetics and local adaptation: variable dim-light vision in sand gobies is illuminated.
    Ebert D; Andrew RL
    Mol Ecol; 2009 Oct; 18(20):4140-2. PubMed ID: 19857228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The molecular basis of a spectral shift in the rhodopsins of two species of squid from different photic environments.
    Morris A; Bowmaker JK; Hunt DM
    Proc Biol Sci; 1993 Dec; 254(1341):233-40. PubMed ID: 8108455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recurrent convergent evolution at amino acid residue 261 in fish rhodopsin.
    Hill J; Enbody ED; Pettersson ME; Sprehn CG; Bekkevold D; Folkvord A; Laikre L; Kleinau G; Scheerer P; Andersson L
    Proc Natl Acad Sci U S A; 2019 Sep; 116(37):18473-18478. PubMed ID: 31451650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Importance of alanine at position 178 in proteorhodopsin for absorption of prevalent ambient light in the marine environment.
    Yamada K; Kawanabe A; Kandori H
    Biochemistry; 2010 Mar; 49(11):2416-23. PubMed ID: 20170125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contrasting modes of evolution of the visual pigments in Heliconius butterflies.
    Yuan F; Bernard GD; Le J; Briscoe AD
    Mol Biol Evol; 2010 Oct; 27(10):2392-405. PubMed ID: 20478921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.