BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 18769039)

  • 1. Hypoxia increases activity of the BK-channel in the inner mitochondrial membrane and reduces activity of the permeability transition pore.
    Cheng Y; Gu XQ; Bednarczyk P; Wiedemann FR; Haddad GG; Siemen D
    Cell Physiol Biochem; 2008; 22(1-4):127-36. PubMed ID: 18769039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calpeptin, not calpain, directly inhibits an ion channel of the inner mitochondrial membrane.
    Derksen M; Vorwerk C; Siemen D
    Protoplasma; 2016 May; 253(3):835-843. PubMed ID: 26108743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complex effects of 17β-estradiol on mitochondrial function.
    Thiede A; Gellerich FN; Schönfeld P; Siemen D
    Biochim Biophys Acta; 2012 Oct; 1817(10):1747-53. PubMed ID: 22414665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of the permeability transition pore by Bax via inhibition of the mitochondrial BK channel.
    Cheng Y; Gulbins E; Siemen D
    Cell Physiol Biochem; 2011; 27(3-4):191-200. PubMed ID: 21471707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial but not plasmalemmal BK channels are hypoxia-sensitive in human glioma.
    Gu XQ; Pamenter ME; Siemen D; Sun X; Haddad GG
    Glia; 2014 Apr; 62(4):504-13. PubMed ID: 24446243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial Permeability Transition Pore and Calcium Handling.
    Parks RJ; Murphy E; Liu JC
    Methods Mol Biol; 2018; 1782():187-196. PubMed ID: 29851001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How many types of large conductance Ca⁺²-activated potassium channels exist in brain mitochondrial inner membrane: evidence for a new mitochondrial large conductance Ca²⁺-activated potassium channel in brain mitochondria.
    Fahanik-Babaei J; Eliassi A; Saghiri R
    Neuroscience; 2011 Dec; 199():125-32. PubMed ID: 21996476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypoxia increases BK channel activity in the inner mitochondrial membrane.
    Gu XQ; Siemen D; Parvez S; Cheng Y; Xue J; Zhou D; Sun X; Jonas EA; Haddad GG
    Biochem Biophys Res Commun; 2007 Jun; 358(1):311-6. PubMed ID: 17481584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prooxidants open both the mitochondrial permeability transition pore and a low-conductance channel in the inner mitochondrial membrane.
    Kushnareva YE; Sokolove PM
    Arch Biochem Biophys; 2000 Apr; 376(2):377-88. PubMed ID: 10775426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct inhibition of the mitochondrial permeability transition pore: a possible mechanism for better neuroprotective effects of allopregnanolone over progesterone.
    Sayeed I; Parvez S; Wali B; Siemen D; Stein DG
    Brain Res; 2009 Mar; 1263():165-73. PubMed ID: 19368823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mersalyl prevents the Tl
    Korotkov SM; Konovalova SA; Nesterov VP; Brailovskaya IV
    Biochem Biophys Res Commun; 2018 Jan; 495(2):1716-1721. PubMed ID: 29223393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-channel currents of the permeability transition pore from the inner mitochondrial membrane of rat liver and of a human hepatoma cell line.
    Loupatatzis C; Seitz G; Schönfeld P; Lang F; Siemen D
    Cell Physiol Biochem; 2002; 12(5-6):269-78. PubMed ID: 12438763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of the Large-Conductance Ca
    Sek A; Kampa RP; Kulawiak B; Szewczyk A; Bednarczyk P
    Molecules; 2021 May; 26(11):. PubMed ID: 34072205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. S-15176 inhibits mitochondrial permeability transition via a mechanism independent of its antioxidant properties.
    Elimadi A; Jullien V; Tillement JP; Morin D
    Eur J Pharmacol; 2003 May; 468(2):93-101. PubMed ID: 12742516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmacological and physiological stimuli do not promote Ca(2+)-sensitive K+ channel activity in isolated heart mitochondria.
    Cancherini DV; Queliconi BB; Kowaltowski AJ
    Cardiovasc Res; 2007 Mar; 73(4):720-8. PubMed ID: 17208207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of mitochondrial potassium channels with the permeability transition pore.
    Cheng Y; Debska-Vielhaber G; Siemen D
    FEBS Lett; 2010 May; 584(10):2005-12. PubMed ID: 20036666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactive oxygen species and permeability transition pore in rat liver and kidney mitoplasts.
    Ronchi JA; Vercesi AE; Castilho RF
    J Bioenerg Biomembr; 2011 Dec; 43(6):709-15. PubMed ID: 21964737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patch clamp reveals powerful blockade of the mitochondrial permeability transition pore by the D2-receptor agonist pramipexole.
    Sayeed I; Parvez S; Winkler-Stuck K; Seitz G; Trieu I; Wallesch CW; Schönfeld P; Siemen D
    FASEB J; 2006 Mar; 20(3):556-8. PubMed ID: 16407457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of extracts of the leaves of Brysocarpus coccineus on rat liver mitochondrial membrane permeability transition (MMPT) pore.
    Adedosu OT; Adejoke TT; Salako OO; Olorunsogo OO
    Afr J Med Med Sci; 2012 Dec; 41 Suppl():125-32. PubMed ID: 23678647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Opening of the mitochondrial permeability transition pore induces reactive oxygen species production at the level of the respiratory chain complex I.
    Batandier C; Leverve X; Fontaine E
    J Biol Chem; 2004 Apr; 279(17):17197-204. PubMed ID: 14963044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.