BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 18769132)

  • 1. Influence of tetramerisation on site-specific post-translational modifications of p53: comparison of human and murine p53 tumor suppressor protein.
    Warnock LJ; Knox A; Mee TR; Raines SA; Milner J
    Cancer Biol Ther; 2008 Sep; 7(9):1481-9. PubMed ID: 18769132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Double mutant P53 (N340Q/L344R) promotes hepatocarcinogenesis through upregulation of Pim1 mediated by PKM2 and LncRNA CUDR.
    Wu M; An J; Zheng Q; Xin X; Lin Z; Li X; Li H; Lu D
    Oncotarget; 2016 Oct; 7(41):66525-66539. PubMed ID: 27167190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acetylation of p53 at lysine 373/382 by the histone deacetylase inhibitor depsipeptide induces expression of p21(Waf1/Cip1).
    Zhao Y; Lu S; Wu L; Chai G; Wang H; Chen Y; Sun J; Yu Y; Zhou W; Zheng Q; Wu M; Otterson GA; Zhu WG
    Mol Cell Biol; 2006 Apr; 26(7):2782-90. PubMed ID: 16537920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of phosphorylation in p53 acetylation and PAb421 epitope recognition in baculoviral and mammalian expressed proteins.
    Warnock LJ; Raines SA; Mee TR; Milner J
    FEBS J; 2005 Apr; 272(7):1669-75. PubMed ID: 15794754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crosstalk between site-specific modifications on p53 and histone H3.
    Warnock LJ; Adamson R; Lynch CJ; Milner J
    Oncogene; 2008 Mar; 27(11):1639-44. PubMed ID: 17891183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Post-translational modifications of p53 tumor suppressor: determinants of its functional targets.
    Taira N; Yoshida K
    Histol Histopathol; 2012 Apr; 27(4):437-43. PubMed ID: 22374721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Post-translational modifications and activation of p53 by genotoxic stresses.
    Appella E; Anderson CW
    Eur J Biochem; 2001 May; 268(10):2764-72. PubMed ID: 11358490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Signaling to p53: breaking the posttranslational modification code.
    Appella E; Anderson CW
    Pathol Biol (Paris); 2000 Apr; 48(3):227-45. PubMed ID: 10858956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct p53 acetylation cassettes differentially influence gene-expression patterns and cell fate.
    Knights CD; Catania J; Di Giovanni S; Muratoglu S; Perez R; Swartzbeck A; Quong AA; Zhang X; Beerman T; Pestell RG; Avantaggiati ML
    J Cell Biol; 2006 May; 173(4):533-44. PubMed ID: 16717128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel pyrido-thieno-pyrimidine derivative activates p53 through induction of phosphorylation and acetylation in colorectal cancer cells.
    Kang MA; Kim MS; Kim JY; Shin YJ; Song JY; Jeong JH
    Int J Oncol; 2015 Jan; 46(1):342-50. PubMed ID: 25338966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding to the naturally occurring double p53 binding site of the Mdm2 promoter alleviates the requirement for p53 C-terminal activation.
    Kaku S; Iwahashi Y; Kuraishi A; Albor A; Yamagishi T; Nakaike S; Kulesz-Martin M
    Nucleic Acids Res; 2001 May; 29(9):1989-93. PubMed ID: 11328884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular senescence induced by p53-ras cooperation is independent of p21waf1 in murine embryo fibroblasts.
    Castro ME; del Valle Guijarro M; Moneo V; Carnero A
    J Cell Biochem; 2004 Jun; 92(3):514-24. PubMed ID: 15156563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional analysis of the roles of posttranslational modifications at the p53 C terminus in regulating p53 stability and activity.
    Feng L; Lin T; Uranishi H; Gu W; Xu Y
    Mol Cell Biol; 2005 Jul; 25(13):5389-95. PubMed ID: 15964796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct pattern of p53 phosphorylation in human tumors.
    Minamoto T; Buschmann T; Habelhah H; Matusevich E; Tahara H; Boerresen-Dale AL; Harris C; Sidransky D; Ronai Z
    Oncogene; 2001 Jun; 20(26):3341-7. PubMed ID: 11423984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ZNF509S1 downregulates PUMA by inhibiting p53K382 acetylation and p53-DNA binding.
    Jeon BN; Yoon JH; Han D; Kim MK; Kim Y; Choi SH; Song J; Kim KS; Kim K; Hur MW
    Biochim Biophys Acta Gene Regul Mech; 2017 Sep; 1860(9):962-972. PubMed ID: 28757384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lysines in the tetramerization domain of p53 selectively modulate G1 arrest.
    Beckerman R; Yoh K; Mattia-Sansobrino M; Zupnick A; Laptenko O; Karni-Schmidt O; Ahn J; Byeon IJ; Keezer S; Prives C
    Cell Cycle; 2016 Jun; 15(11):1425-38. PubMed ID: 27210019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The absence of Ser389 phosphorylation in p53 affects the basal gene expression level of many p53-dependent genes and alters the biphasic response to UV exposure in mouse embryonic fibroblasts.
    Bruins W; Bruning O; Jonker MJ; Zwart E; van der Hoeven TV; Pennings JL; Rauwerda H; de Vries A; Breit TM
    Mol Cell Biol; 2008 Mar; 28(6):1974-87. PubMed ID: 18195040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HLA-B-associated transcript 3 (Bat3)/Scythe is essential for p300-mediated acetylation of p53.
    Sasaki T; Gan EC; Wakeham A; Kornbluth S; Mak TW; Okada H
    Genes Dev; 2007 Apr; 21(7):848-61. PubMed ID: 17403783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surf the post-translational modification network of p53 regulation.
    Gu B; Zhu WG
    Int J Biol Sci; 2012; 8(5):672-84. PubMed ID: 22606048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel system to investigate the phosphorylation of the p53 tumor suppressor protein by the protein kinase CK2.
    McKendrick L; Meek DW
    Cell Mol Biol Res; 1994; 40(5-6):555-61. PubMed ID: 7735330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.