BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 18769452)

  • 1. Malignant Tregs express low molecular splice forms of FOXP3 in Sézary syndrome.
    Krejsgaard T; Gjerdrum LM; Ralfkiaer E; Lauenborg B; Eriksen KW; Mathiesen AM; Bovin LF; Gniadecki R; Geisler C; Ryder LP; Zhang Q; Wasik MA; Odum N; Woetmann A
    Leukemia; 2008 Dec; 22(12):2230-9. PubMed ID: 18769452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FOXP3+CD25- tumor cells with regulatory function in Sézary syndrome.
    Heid JB; Schmidt A; Oberle N; Goerdt S; Krammer PH; Suri-Payer E; Klemke CD
    J Invest Dermatol; 2009 Dec; 129(12):2875-85. PubMed ID: 19626037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CD4+CD25+Foxp3+ regulatory T cells protect the proinflammatory activation of human umbilical vein endothelial cells.
    He S; Li M; Ma X; Lin J; Li D
    Arterioscler Thromb Vasc Biol; 2010 Dec; 30(12):2621-30. PubMed ID: 20930173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The prevalence of FOXP3+ regulatory T-cells in peripheral blood of patients with NSCLC.
    Li L; Chao QG; Ping LZ; Xue C; Xia ZY; Qian D; Shi-ang H
    Cancer Biother Radiopharm; 2009 Jun; 24(3):357-67. PubMed ID: 19538059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Paucity of FOXP3+ cells in skin and peripheral blood distinguishes Sézary syndrome from other cutaneous T-cell lymphomas.
    Klemke CD; Fritzsching B; Franz B; Kleinmann EV; Oberle N; Poenitz N; Sykora J; Banham AH; Roncador G; Kuhn A; Goerdt S; Krammer PH; Suri-Payer E
    Leukemia; 2006 Jun; 20(6):1123-9. PubMed ID: 16557241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Foxp3 processing by proprotein convertases and control of regulatory T cell function.
    de Zoeten EF; Lee I; Wang L; Chen C; Ge G; Wells AD; Hancock WW; Ozkaynak E
    J Biol Chem; 2009 Feb; 284(9):5709-16. PubMed ID: 19117830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Foxp3 expression in melanoma cells as a possible mechanism of resistance to immune destruction.
    Niu J; Jiang C; Li C; Liu L; Li K; Jian Z; Gao T
    Cancer Immunol Immunother; 2011 Aug; 60(8):1109-18. PubMed ID: 21547596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intense Foxp3+ CD25+ regulatory T-cell infiltration is associated with high-grade cutaneous squamous cell carcinoma and counterbalanced by CD8+/Foxp3+ CD25+ ratio.
    Azzimonti B; Zavattaro E; Provasi M; Vidali M; Conca A; Catalano E; Rimondini L; Colombo E; Valente G
    Br J Dermatol; 2015 Jan; 172(1):64-73. PubMed ID: 24910265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human CD19(+)CD25(high) B regulatory cells suppress proliferation of CD4(+) T cells and enhance Foxp3 and CTLA-4 expression in T-regulatory cells.
    Kessel A; Haj T; Peri R; Snir A; Melamed D; Sabo E; Toubi E
    Autoimmun Rev; 2012 Jul; 11(9):670-7. PubMed ID: 22155204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction of regulatory T cells by Mogamulizumab, a defucosylated anti-CC chemokine receptor 4 antibody, in patients with aggressive/refractory mycosis fungoides and Sézary syndrome.
    Ni X; Jorgensen JL; Goswami M; Challagundla P; Decker WK; Kim YH; Duvic MA
    Clin Cancer Res; 2015 Jan; 21(2):274-85. PubMed ID: 25376389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CD4(+) CD25(low) GITR(+) cells: a novel human CD4(+) T-cell population with regulatory activity.
    Bianchini R; Bistoni O; Alunno A; Petrillo MG; Ronchetti S; Sportoletti P; Bocci EB; Nocentini G; Gerli R; Riccardi C
    Eur J Immunol; 2011 Aug; 41(8):2269-78. PubMed ID: 21557210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and characterization of Foxp3(+) gammadelta T cells in mouse and human.
    Kang N; Tang L; Li X; Wu D; Li W; Chen X; Cui L; Ba D; He W
    Immunol Lett; 2009 Aug; 125(2):105-13. PubMed ID: 19539651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Absence of modulation of CD4+CD25 regulatory T cells in CTCL patients treated with bexarotene.
    Knol AC; Quéreux G; Brocard A; Ballanger F; Khammari A; Nguyen JM; Dréno B
    Exp Dermatol; 2010 Aug; 19(8):e95-102. PubMed ID: 19845755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulatory T cells and immunodeficiency in mycosis fungoides and Sézary syndrome.
    Krejsgaard T; Odum N; Geisler C; Wasik MA; Woetmann A
    Leukemia; 2012 Mar; 26(3):424-32. PubMed ID: 21904385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Staphylococcus aureus enterotoxins induce FOXP3 in neoplastic T cells in Sézary syndrome.
    Willerslev-Olsen A; Buus TB; Nastasi C; Blümel E; Gluud M; Bonefeld CM; Geisler C; Lindahl LM; Vermeer M; Wasik MA; Iversen L; Becker JC; Andersen MH; Gjerdrum LMR; Litvinov IV; Litman T; Krejsgaard T; Woetmann A; Ødum N
    Blood Cancer J; 2020 May; 10(5):57. PubMed ID: 32409671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lack of suppressive CD4+CD25+FOXP3+ T cells in advanced stages of primary cutaneous T-cell lymphoma.
    Tiemessen MM; Mitchell TJ; Hendry L; Whittaker SJ; Taams LS; John S
    J Invest Dermatol; 2006 Oct; 126(10):2217-23. PubMed ID: 16741512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Histopathological and immunophenotypical criteria for the diagnosis of Sézary syndrome in differentiation from other erythrodermic skin diseases: a European Organisation for Research and Treatment of Cancer (EORTC) Cutaneous Lymphoma Task Force Study of 97 cases.
    Klemke CD; Booken N; Weiss C; Nicolay JP; Goerdt S; Felcht M; Géraud C; Kempf W; Assaf C; Ortonne N; Battistella M; Bagot M; Knobler R; Quaglino P; Arheiliger B; Santucci M; Jansen P; Vermeer MH; Willemze R
    Br J Dermatol; 2015 Jul; 173(1):93-105. PubMed ID: 25864856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induction of IL-10+ CD4+ CD25+ regulatory T cells with decreased NF-κB expression during immunotherapy.
    Tsai YG; Chiou YL; Chien JW; Wu HP; Lin CY
    Pediatr Allergy Immunol; 2010 Feb; 21(1 Pt 2):e166-73. PubMed ID: 19682278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulation of α7 nicotinic acetylcholine receptor by nicotine increases suppressive capacity of naturally occurring CD4+CD25+ regulatory T cells in mice in vitro.
    Wang DW; Zhou RB; Yao YM; Zhu XM; Yin YM; Zhao GJ; Dong N; Sheng ZY
    J Pharmacol Exp Ther; 2010 Dec; 335(3):553-61. PubMed ID: 20843956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of IL-37 contributes to the immunosuppressive property of human CD4+CD25+ regulatory T cells.
    Shuai X; Wei-min L; Tong YL; Dong N; Sheng ZY; Yao YM
    Sci Rep; 2015 Sep; 5():14478. PubMed ID: 26411375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.