BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

443 related articles for article (PubMed ID: 18769871)

  • 1. Antifungal activity and mode of action of silver nano-particles on Candida albicans.
    Kim KJ; Sung WS; Suh BK; Moon SK; Choi JS; Kim JG; Lee DG
    Biometals; 2009 Apr; 22(2):235-42. PubMed ID: 18769871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Damage to the cytoplasmic membrane and cell death caused by lycopene in Candida albicans.
    Sung WS; Lee IS; Lee DG
    J Microbiol Biotechnol; 2007 Nov; 17(11):1797-804. PubMed ID: 18092463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antifungal effect of silver nanoparticles on dermatophytes.
    Kim KJ; Sung WS; Moon SK; Choi JS; Kim JG; Lee DG
    J Microbiol Biotechnol; 2008 Aug; 18(8):1482-4. PubMed ID: 18756112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antifungal activity of lariciresinol derived from Sambucus williamsii and their membrane-active mechanisms in Candida albicans.
    Hwang B; Cho J; Hwang IS; Jin HG; Woo ER; Lee DG
    Biochem Biophys Res Commun; 2011 Jul; 410(3):489-93. PubMed ID: 21679690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isocryptomerin, a novel membrane-active antifungal compound from Selaginella tamariscina.
    Lee J; Choi Y; Woo ER; Lee DG
    Biochem Biophys Res Commun; 2009 Feb; 379(3):676-80. PubMed ID: 19101515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antifungal mechanism of an antimicrobial peptide, HP (2--20), derived from N-terminus of Helicobacter pylori ribosomal protein L1 against Candida albicans.
    Lee DG; Park Y; Kim HN; Kim HK; Kim PI; Choi BH; Hahm KS
    Biochem Biophys Res Commun; 2002 Mar; 291(4):1006-13. PubMed ID: 11866466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The candidacidal activity of indole-3-carbinol that binds with DNA.
    Sung WS; Lee DG
    IUBMB Life; 2007 Jun; 59(6):408-12. PubMed ID: 17613172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro candidacidal action of Korean red ginseng saponins against Candida albicans.
    Sung WS; Lee DG
    Biol Pharm Bull; 2008 Jan; 31(1):139-42. PubMed ID: 18175957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silver nanoparticles induce apoptotic cell death in Candida albicans through the increase of hydroxyl radicals.
    Hwang IS; Lee J; Hwang JH; Kim KJ; Lee DG
    FEBS J; 2012 Apr; 279(7):1327-38. PubMed ID: 22324978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fungicidal effect and the mode of action of piscidin 2 derived from hybrid striped bass.
    Sung WS; Lee J; Lee DG
    Biochem Biophys Res Commun; 2008 Jul; 371(3):551-5. PubMed ID: 18445475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence on the plasma membrane of Candida albicans by HP (2-9)-magainin 2 (1-12) hybrid peptide.
    Lee DG; Park Y; Kim PI; Jeong HG; Woo ER; Hahm KS
    Biochem Biophys Res Commun; 2002 Oct; 297(4):885-9. PubMed ID: 12359236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of the mechanism of action of 3-(4-bromophenyl)-5-acyloxymethyl-2,5-dihydrofuran-2-one against Candida albicans by flow cytometry.
    Vale-Silva LA; Buchta V; Vokurková D; Pour M
    Bioorg Med Chem Lett; 2006 May; 16(9):2492-5. PubMed ID: 16480875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic analysis of the mode of antibacterial action of silver nanoparticles.
    Lok CN; Ho CM; Chen R; He QY; Yu WY; Sun H; Tam PK; Chiu JF; Che CM
    J Proteome Res; 2006 Apr; 5(4):916-24. PubMed ID: 16602699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro antibacterial activity and antifungal mode of action of flocculosin, a membrane-active cellobiose lipid.
    Mimee B; Pelletier R; Bélanger RR
    J Appl Microbiol; 2009 Sep; 107(3):989-96. PubMed ID: 19486430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HP (2-20) derived from the amino terminal region of helicobacterpylori ribosomal protein L1 exerts its antifungal effects by damaging the plasma membranes of Candida albicans.
    Lee DG; Kim PI; Park Y; Jang SH; Park SC; Woo ER; Hahm KS
    J Pept Sci; 2002 Aug; 8(8):453-60. PubMed ID: 12212808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic effect between silver nanoparticles and antifungal agents on Candida albicans revealed by dynamic surface-enhanced Raman spectroscopy.
    Li H; Wang L; Chai Y; Cao Y; Lu F
    Nanotoxicology; 2018 Dec; 12(10):1230-1240. PubMed ID: 30501538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosynthesis of silver nanoparticles by the endophytic fungus Epicoccum nigrum and their activity against pathogenic fungi.
    Qian Y; Yu H; He D; Yang H; Wang W; Wan X; Wang L
    Bioprocess Biosyst Eng; 2013 Nov; 36(11):1613-9. PubMed ID: 23463299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antifungal activity of silver nanoparticles against Candida spp.
    Panácek A; Kolár M; Vecerová R; Prucek R; Soukupová J; Krystof V; Hamal P; Zboril R; Kvítek L
    Biomaterials; 2009 Oct; 30(31):6333-40. PubMed ID: 19698988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Signaling gene cascade in silver nanoparticle induced apoptosis.
    Gopinath P; Gogoi SK; Sanpui P; Paul A; Chattopadhyay A; Ghosh SS
    Colloids Surf B Biointerfaces; 2010 Jun; 77(2):240-5. PubMed ID: 20197232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous flow nano-technology: manipulating the size, shape, agglomeration, defects and phases of silver nano-particles.
    Iyer KS; Raston CL; Saunders M
    Lab Chip; 2007 Dec; 7(12):1800-5. PubMed ID: 18030403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.