BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

443 related articles for article (PubMed ID: 18769871)

  • 21. Mechanism of action of coumarin and silver(I)-coumarin complexes against the pathogenic yeast Candida albicans.
    Thati B; Noble A; Rowan R; Creaven BS; Walsh M; McCann M; Egan D; Kavanagh K
    Toxicol In Vitro; 2007 Aug; 21(5):801-8. PubMed ID: 17350222
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Antifungal property of hibicuslide C and its membrane-active mechanism in Candida albicans.
    Hwang JH; Jin Q; Woo ER; Lee DG
    Biochimie; 2013 Oct; 95(10):1917-22. PubMed ID: 23816874
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vitro studies on oxidative stress-independent, Ag nanoparticles-induced cell toxicity of
    Radhakrishnan VS; Dwivedi SP; Siddiqui MH; Prasad T
    Int J Nanomedicine; 2018; 13(T-NANO 2014 Abstracts):91-96. PubMed ID: 29593404
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antifungal property of dihydrodehydrodiconiferyl alcohol 9'-O-beta-D-glucoside and its pore-forming action in plasma membrane of Candida albicans.
    Choi H; Cho J; Jin Q; Woo ER; Lee DG
    Biochim Biophys Acta; 2012 Jul; 1818(7):1648-55. PubMed ID: 22406553
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Advancement of Near-infrared (NIR) laser interceded surface enactment of proline functionalized graphene oxide with silver nanoparticles for proficient antibacterial, antifungal and wound recuperating therapy in nursing care in hospitals.
    Wu X; Li H; Xiao N
    J Photochem Photobiol B; 2018 Oct; 187():89-95. PubMed ID: 30103077
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ocimum sanctum essential oil and its active principles exert their antifungal activity by disrupting ergosterol biosynthesis and membrane integrity.
    Khan A; Ahmad A; Akhtar F; Yousuf S; Xess I; Khan LA; Manzoor N
    Res Microbiol; 2010 Dec; 161(10):816-23. PubMed ID: 20868749
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Antifungal effects of Melaleuca alternifolia (tea tree) oil and its components on Candida albicans, Candida glabrata and Saccharomyces cerevisiae.
    Hammer KA; Carson CF; Riley TV
    J Antimicrob Chemother; 2004 Jun; 53(6):1081-5. PubMed ID: 15140856
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Formation of silver nanoparticles in deoxyribonucleic acid-poly(o-methoxyaniline) hybrid: a novel nano-biocomposite.
    Dawn A; Nandi AK
    J Phys Chem B; 2006 Sep; 110(37):18291-8. PubMed ID: 16970449
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Silver Nanoparticle-Embedded Carbon Nitride: Antifungal Activity on
    Arumugam G; Durairaj S; Gonçale JC; Fonseca do Carmo PH; Terra Garcia M; Soares da Silva N; Borges BM; Loures FV; Ghosh D; Vivanco JF; Junqueira JC
    ACS Appl Mater Interfaces; 2024 May; 16(20):25727-25739. PubMed ID: 38742469
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fungicidal effect of antimicrobial peptide, PMAP-23, isolated from porcine myeloid against Candida albicans.
    Lee DG; Kim DH; Park Y; Kim HK; Kim HN; Shin YK; Choi CH; Hahm KS
    Biochem Biophys Res Commun; 2001 Mar; 282(2):570-4. PubMed ID: 11401498
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antifungal activity and pore-forming mechanism of astacidin 1 against Candida albicans.
    Choi H; Lee DG
    Biochimie; 2014 Oct; 105():58-63. PubMed ID: 24955933
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Three-terminal electric transport measurements on gold nano-particles combined with ex situ TEM inspection.
    Gao B; Osorio EA; Babaei Gaven K; van der Zant HS
    Nanotechnology; 2009 Oct; 20(41):415207. PubMed ID: 19762943
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phytosphingosine kills Candida albicans by disrupting its cell membrane.
    Veerman EC; Valentijn-Benz M; van't Hof W; Nazmi K; van Marle J; Amerongen AV
    Biol Chem; 2010 Jan; 391(1):65-71. PubMed ID: 19919184
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An antifungal mechanism of curcumin lies in membrane-targeted action within Candida albicans.
    Lee W; Lee DG
    IUBMB Life; 2014 Nov; 66(11):780-5. PubMed ID: 25380239
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced dark field microscopy for rapid artifact-free detection of nanoparticle binding to Candida albicans cells and hyphae.
    Weinkauf H; Brehm-Stecher BF
    Biotechnol J; 2009 Jun; 4(6):871-9. PubMed ID: 19492326
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis of gold-silver nanoalloys under microwave-assisted irradiation by deposition of silver on gold nanoclusters/triple helix glucan and antifungal activity.
    Jia X; Yao Y; Yu G; Qu L; Li T; Li Z; Xu C
    Carbohydr Polym; 2020 Jun; 238():116169. PubMed ID: 32299566
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Silver nanoparticles embedded mesoporous SiO₂ nanosphere: an effective anticandidal agent against Candida albicans 077.
    Qasim M; Singh BR; Naqvi AH; Paik P; Das D
    Nanotechnology; 2015 Jul; 26(28):285102. PubMed ID: 26119911
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Highly potential antifungal activity of quantum-sized silver nanoparticles against Candida albicans.
    Selvaraj M; Pandurangan P; Ramasami N; Rajendran SB; Sangilimuthu SN; Perumal P
    Appl Biochem Biotechnol; 2014 May; 173(1):55-66. PubMed ID: 24648138
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Antifungal properties and mode of action of psacotheasin, a novel knottin-type peptide derived from Psacothea hilaris.
    Hwang B; Hwang JS; Lee J; Lee DG
    Biochem Biophys Res Commun; 2010 Sep; 400(3):352-7. PubMed ID: 20735987
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Antifungal compounds redirect metabolic pathways in yeasts: metabolites as indicators of modes of action.
    Wesolowski J; Hassan RY; Reinhardt K; Hodde S; Bilitewski U
    J Appl Microbiol; 2010 Feb; 108(2):462-71. PubMed ID: 19645763
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.