BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 18769888)

  • 1. Model and molecular dynamic simulations of active and inactive endo-beta-1,4-mannanase in tomato fruit.
    Li J; Bewley JD; Hua Z; Zheng W; Wang A
    Protein J; 2008 Sep; 27(6):363-70. PubMed ID: 18769888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variation in its C-terminal amino acids determines whether endo-beta-mannanase is active or inactive in ripening tomato fruits of different cultivars.
    Bourgault R; Bewley JD
    Plant Physiol; 2002 Nov; 130(3):1254-62. PubMed ID: 12427992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endo-beta-mannanase activity increases in the skin and outer pericarp of tomato fruits during ripening.
    Bewley JD; Banik M; Bourgault R; Feurtado JA; Toorop P; Hilhorst HW
    J Exp Bot; 2000 Mar; 51(344):529-38. PubMed ID: 10938809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endo-beta-mannanase is present in an inactive form in ripening tomato fruits of the cultivar Walter.
    Banik M; Bourgault R; Bewley JD
    J Exp Bot; 2001 Jan; 52(354):105-11. PubMed ID: 11181719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression and location of endo-beta-mannanase during the ripening of tomato fruit, and the relationship between its activity and softening.
    Wang A; Li J; Zhang B; Xu X; Bewley JD
    J Plant Physiol; 2009 Oct; 166(15):1672-84. PubMed ID: 19450903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mannans in tomato fruit are not depolymerized during ripening despite the presence of endo-β-mannanase.
    Prakash R; Johnston SL; Boldingh HL; Redgwell RJ; Atkinson RG; Melton LD; Brummell DA; Schröder R
    J Plant Physiol; 2012 Aug; 169(12):1125-33. PubMed ID: 22658221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LeMAN4 endo-beta-mannanase from ripe tomato fruit can act as a mannan transglycosylase or hydrolase.
    Schröder R; Wegrzyn TF; Sharma NN; Atkinson RG
    Planta; 2006 Oct; 224(5):1091-102. PubMed ID: 16649044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Salt bridges are pivotal for the kinetic stability of GH26 endo-mannanase (ManB-1601).
    Kaira GS; Usharani D; Kapoor M
    Int J Biol Macromol; 2019 Jul; 133():1236-1241. PubMed ID: 31034904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-based investigation into the functional roles of the extended loop and substrate-recognition sites in an endo-β-1,4-D-mannanase from the Antarctic springtail, Cryptopygus antarcticus.
    Kim MK; An YJ; Song JM; Jeong CS; Kang MH; Kwon KK; Lee YH; Cha SS
    Proteins; 2014 Nov; 82(11):3217-23. PubMed ID: 25082572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional structure of (1,4)-beta-D-mannan mannanohydrolase from tomato fruit.
    Bourgault R; Oakley AJ; Bewley JD; Wilce MC
    Protein Sci; 2005 May; 14(5):1233-41. PubMed ID: 15840830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal-dependent thermal stability of recombinant endo-mannanase (ManB-1601) belonging to family GH 26 from Bacillus sp. CFR1601.
    Srivastava PK; Appu Rao G AR; Kapoor M
    Enzyme Microb Technol; 2016 Mar; 84():41-9. PubMed ID: 26827773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and functional analysis of a novel psychrophilic β-mannanase from Glaciozyma antarctica PI12.
    Parvizpour S; Razmara J; Ramli AN; Md Illias R; Shamsir MS
    J Comput Aided Mol Des; 2014 Jun; 28(6):685-98. PubMed ID: 24849507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning, molecular modeling, and docking analysis of alkali-thermostable β-mannanase from Bacillus nealsonii PN-11.
    Chauhan PS; Tripathi SP; Sangamwar AT; Puri N; Sharma P; Gupta N
    Appl Microbiol Biotechnol; 2015 Nov; 99(21):8917-25. PubMed ID: 25967652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beta-mannosidase (EC 3.2.1.25) activity during and following germination of tomato (Lycopersicon esculentum Mill.) seeds. Purification, cloning and characterization.
    Mo B; Bewley JD
    Planta; 2002 May; 215(1):141-52. PubMed ID: 12012251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular cloning of kman coding for mannanase from Klebsiella oxytoca KUB-CW2-3 and its hybrid mannanase characters.
    Pongsapipatana N; Damrongteerapap P; Chantorn S; Sintuprapa W; Keawsompong S; Nitisinprasert S
    Enzyme Microb Technol; 2016 Jul; 89():39-51. PubMed ID: 27233126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From structure to function: insights into the catalytic substrate specificity and thermostability displayed by Bacillus subtilis mannanase BCman.
    Yan XX; An XM; Gui LL; Liang DC
    J Mol Biol; 2008 Jun; 379(3):535-44. PubMed ID: 18455734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The structural analysis and the role of calcium binding site for thermal stability in mannanase.
    Kumagai Y; Kawakami K; Mukaihara T; Kimura M; Hatanaka T
    Biochimie; 2012 Dec; 94(12):2783-90. PubMed ID: 23009928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endo-β-D-1,4-mannanase from Chrysonilia sitophila displays a novel loop arrangement for substrate selectivity.
    Gonçalves AM; Silva CS; Madeira TI; Coelho R; de Sanctis D; San Romão MV; Bento I
    Acta Crystallogr D Biol Crystallogr; 2012 Nov; 68(Pt 11):1468-78. PubMed ID: 23090396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel low-temperature-active, salt-tolerant and proteases-resistant endo-1,4-β-mannanase from a new Sphingomonas strain.
    Zhou J; Zhang R; Gao Y; Li J; Tang X; Mu Y; Wang F; Li C; Dong Y; Huang Z
    J Biosci Bioeng; 2012 May; 113(5):568-74. PubMed ID: 22265897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new acidophilic thermostable endo-1,4-β-mannanase from Penicillium oxalicum GZ-2: cloning, characterization and functional expression in Pichia pastoris.
    Liao H; Li S; Zheng H; Wei Z; Liu D; Raza W; Shen Q; Xu Y
    BMC Biotechnol; 2014 Oct; 14():90. PubMed ID: 25348022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.