These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 18771333)

  • 1. Laser directed growth of carbon-based nanostructures by plasmon resonant chemical vapor deposition.
    Hung WH; Hsu IK; Bushmaker A; Kumar R; Theiss J; Cronin SB
    Nano Lett; 2008 Oct; 8(10):3278-82. PubMed ID: 18771333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of deposition pressure on the morphology and structural properties of carbon nanotubes synthesized by hot-filament chemical vapor deposition.
    Arendse CJ; Malgas GF; Scriba MR; Cummings FR; Knoesen D
    J Nanosci Nanotechnol; 2007 Oct; 7(10):3638-42. PubMed ID: 18330185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A parametric study of single-wall carbon nanotube growth by laser ablation.
    Arepalli S; Holmes WA; Nikolaev P; Hadjiev VG; Scott CD
    J Nanosci Nanotechnol; 2004 Sep; 4(7):762-73. PubMed ID: 15570958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The problem of purifying single-walled carbon nanotubes.
    Vivekchand SR; Jayakanth R; Govindaraj A; Rao CN
    Small; 2005 Oct; 1(10):920-3. PubMed ID: 17193370
    [No Abstract]   [Full Text] [Related]  

  • 5. Plasma-enhanced chemical vapor deposition of multiwalled carbon nanofibers.
    Matthews K; Cruden BA; Chen B; Meyyappan M; Delzeit L
    J Nanosci Nanotechnol; 2002 Oct; 2(5):475-80. PubMed ID: 12908282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulatory peptides are susceptible to oxidation by metallic impurities within carbon nanotubes.
    Ambrosi A; Pumera M
    Chemistry; 2010 Feb; 16(6):1786-92. PubMed ID: 20066697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultra-high oxidation resistance of suspended single-wall carbon nanotube bundles grown by an "all-laser" process.
    Yi JH; Aïssa B; El KM
    J Nanosci Nanotechnol; 2007 Oct; 7(10):3394-9. PubMed ID: 18330146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth of carbon nanotubes on Si substrate using Fe catalyst produced by pulsed laser deposition.
    Krishnamurthy S; Donnelly T; McEvoy N; Blau W; Lunney JG; Teh AS; Teo KB; Milne WI
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5748-52. PubMed ID: 19198299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stacking nature of the catalytic chemical vapor deposition-derived double-walled carbon nanotubes.
    Kim YA; Muramatsu H; Kojima M; Hayashi T; Kaburagi Y; Endo M
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3321-4. PubMed ID: 17252756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A nucleation and growth model of vertically-oriented carbon nanofibers or nanotubes by plasma-enhanced catalytic chemical vapor deposition.
    Cojocaru CS; Senger A; Le Normand F
    J Nanosci Nanotechnol; 2006 May; 6(5):1331-8. PubMed ID: 16792361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purity evaluation of carbon nanotube materials by thermogravimetric, TEM, and SEM methods.
    Trigueiro JP; Silva GG; Lavall RL; Furtado CA; Oliveira S; Ferlauto AS; Lacerda RG; Ladeira LO; Liu JW; Frost RL; George GA
    J Nanosci Nanotechnol; 2007 Oct; 7(10):3477-86. PubMed ID: 18330161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency dependence of the dielectrophoretic separation of single-walled carbon nanotubes.
    Hennrich F; Krupke R; Kappes MM; Löhneysen HV
    J Nanosci Nanotechnol; 2005 Jul; 5(7):1166-71. PubMed ID: 16108444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and evaluation of nanoparticle release during the synthesis of single-walled and multiwalled carbon nanotubes by chemical vapor deposition.
    Tsai SJ; Hofmann M; Hallock M; Ada E; Kong J; Ellenbecker M
    Environ Sci Technol; 2009 Aug; 43(15):6017-23. PubMed ID: 19731712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Employing Raman spectroscopy to qualitatively evaluate the purity of carbon single-wall nanotube materials.
    Dillon AC; Yudasaka M; Dresselhaus MS
    J Nanosci Nanotechnol; 2004 Sep; 4(7):691-703. PubMed ID: 15570946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of the Taguchi analytical method for optimization of effective parameters of the chemical vapor deposition process controlling the production of nanotubes/nanobeads.
    Sharon M; Apte PR; Purandare SC; Zacharia R
    J Nanosci Nanotechnol; 2005 Feb; 5(2):288-95. PubMed ID: 15853150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification of single-walled carbon nanotubes.
    Pillai SK; Ray SS; Moodley M
    J Nanosci Nanotechnol; 2007 Sep; 7(9):3011-47. PubMed ID: 18019129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study of nanomaterial dispersion in solution by wet-cell transmission electron microscopy.
    Franks R; Morefield S; Wen J; Liao D; Alvarado J; Strano M; Marsh C
    J Nanosci Nanotechnol; 2008 Sep; 8(9):4404-7. PubMed ID: 19049033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrical and Raman spectroscopic studies of vertically aligned multi-walled carbon nanotubes.
    Mathur A; Tweedie M; Roy SS; Maguire PD; McLaughlin JA
    J Nanosci Nanotechnol; 2009 Jul; 9(7):4392-6. PubMed ID: 19916463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth of carbon nanotubes at low powers by impedance-matched microwave plasma enhanced chemical vapor deposition method.
    Chen SY; Chang LW; Peng CW; Miao HY; Lue JT
    J Nanosci Nanotechnol; 2005 Nov; 5(11):1887-92. PubMed ID: 16433426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystallinity dependence of the plasmon resonant Raman scattering by anisotropic gold nanocrystals.
    Portalès H; Goubet N; Saviot L; Yang P; Sirotkin S; Duval E; Mermet A; Pileni MP
    ACS Nano; 2010 Jun; 4(6):3489-97. PubMed ID: 20565142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.